File No. 11014/04/2021-QA (E file 1349) Food Safety and Standards Authority of India (A statutory Authority established under the Food Safety and Standards Act, 2006) (Quality Assurance Division) FDA Bhawan, Kotla Road, New Delhi – 110002

Dated, the 20 July, 2021

ORDER

Subject: Revised FSSAI Manual of Methods of Analysis of Foods – Alcoholic Beverages – reg.

Revised FSSAI "Manual of Methods of Analysis of Foods – Alcoholic Beverages" which has been approved by the Food Authority in its 35th meeting held on 24.06.2021 is enclosed herewith.

2. This manual shall be used by the laboratories with immediate effect. It supersedes the earlier manual on Alcoholic Beverages issued vide Office Order No. 1-90/FSSAI/SP (MS&A)/2009 dated 03.07.2019.

3. Since the process of updation of test methods is dynamic, any changes happening from time to time will be notified separately. Queries/concerns, if any, may be forwarded to *email: sp-sampling@fssai.gov.in*, *dinesh.k@fssai.gov.in*

2

Encl: as above

(Harinder Singh Oberoi) Advisor (QA)

To:

1. All FSSAI Notified Laboratories

2. All State Food Testing Laboratories

MANUAL OF METHODS OF ANALYSIS OF FOODS **ALCOHOLIC BEVERAGES**

PREFACE

Food safety requires an assurance that food will not cause any harm to the consumer, when it is prepared and/or consumed according to its intended use. There is a significant challenge in ensuring food safety to protect public health. Safeguarding food safety in today's complex world is a formidable task and is possible only with an intensive effort of all the stakeholders including regulatory authorities, industry and consumers.

The FSSAI Manual of Methods for Analysis of Alcoholic Beverages is principally intended to provide unified, up-to-date testing methods for regulatory compliance. The manual brings together testing methodologies approved by FSSAI for use in surveillance and implementing the regulatory program. The objective here is to adopt "One Parameter - One Method" approach. These methods are dynamic and will be constantly updated, commensurate with the latest technological advancements in food analysis. The FSSAI notified laboratories shall use these testing methods only for analyzing samples under the Food Safety and Standards Act, 2006 and Food Safety and Standards Regulations, 2011.

Any suggestions/feedback from the stakeholders, which will contribute towards updating the manuals from time to time are welcome.

Single

Shri ArunSinghal Chief Executive Officer, Food Safety and Standards Authority of India, FDA Bhawan, Kotla Road, New Delhi – 110002

ACKNOWLEDGEMENT

My deepest sense of gratitude and indebtedness to all the Members of the Panel on "Methods of Sampling and Analysis" especially Dr. Jagan Mohan Rao whose help, knowledge and insight has led to the successful revision of this manual.

Sincere thanks to the Panel, Chairman for their valuable guidance and encouragement and the Secretariat of this panel who have extended their support during this revision process.

Deepest appreciation to the Chairperson, FSSAI and CEO, FSSAI for their cooperation, support and constant encouragement without which the work would not have seen the light of day.

July 2021

Dr. Harinder Singh Oberoi Advisor (QA), Food Safety and Standards Authority of India, FDA Bhawan, Kotla Road, New Delhi – 110002

List of Contributors

Name	Organization		
Dr. Rajan Sharma	ICAR-National Dairy Research Institute, Karnal		
Dr. Ajit Dua	Punjab Biotechnology Incubator, Mohali		
Dr. AK Dikshit	Retd. from Division of Agricultural Chemicals, Indian		
	Agricultural Research Institute (IARI), Pusa, New Delhi		
Dr. Alok Kumar Srivastava	CSIR-Central Food Technological Research Institute		
	(CFTRI), Mysuru		
Dr. Jagan Mohan Rao	Retd. from CSIR-Central Food Technological Research		
	Institute (CFTRI), Mysuru		
Dr. Kiran N Bhilegaonkar	ICAR-Indian Veterinary Research Institute Regional		
	Station, Pune		
Dr. Lalitha Ramakrishna	Retd. from CSIR-Central Food Technological Research		
Gowda	Institute (CFTRI), Mysuru		
Dr. Mohana Krishna Reddy	CSIR- Indian Institute of Chemical Technology, Hyderabad		
Mudiam			
Dr. Rajesh R Nair	CALF, National Dairy Development Board, Anand		
Dr. Raju Khan	CSIR-Advanced Materials & Processes Research Institute,		
	Bhopal		
Dr. Reena Das	Postgraduate Institute of Medical Education and Research,		
	Chandigarh		
Dr. Sanu Jacob	Food Safety and Standards Authority of India		
Dr. Dinesh Kumar	Food Safety and Standards Authority of India		
Shri Shailender Kumar	Food Safety and Standards Authority of India		
Ms. Kanika Aggarwal	Food Safety and Standards Authority of India		
Shri Ratish Ramanan	Food Safety and Standards Authority of India		

TABLE OF CONTENTS

S. No.	TITLE		
1.	Alcoholic Beverages and Types		1
2.	General Glassware and Ap	paratus	2
	METHOD NO.	METHOD	
2	ESSAL 12 001-2021	Determination of Ethyl Alcohol Content - Pycnometer	2.4
5.	5. FSSA I 15.001.2021	Method or Hydrometer Method	5-4
4	ESSAL 12 002-2021	Determination of Ethyl Alcohol Content - Distillation	5.6
4.	F35AI 15.002.2021	Method (for products containing high volatile acids)	5-0
5	ESSAL 12 002-2021	Gas Chromatography-FID Method of Alcohol	7
5.	F35AI 15.005.2021	Estimation using Chromosorb Support Columns	7
6	ESSAL 12 004-2021	Determination of Ethyl Alcohol Content - Dichromate	<u> </u>
0.	ГЗЗАТ 13.004.2021	Oxidation Method	8-10
		Gas Chromatography-FID Method of Ethyl Alcohol	
7.	FSSAI 13.005:2021	Estimation using Carbowax (on carbopack support)	11-12
		Column	
8.	FSSAI 13.006:2021	Determination of Residue on Evaporation	13
0	ESSAL 12 007-2021	Determination of Total Acids (as Tartaric Acid) -	14
9.	155AI 15.007.2021	Method I (for colourless liquors)	14
10	ESSAL 12 009-2021	Determination of Total Acids (as Tartaric Acid) -	15
10.	155AI 15.000.2021	Method II (for coloured liquors such as Wine, Toddy)	15
11.	FSSAI 13.009:2021	Determination of Volatile Acids (as Acetic Acid)	16
12.	FSSAI 13.010:2021	Determination of Total Esters	17
12	ESSAL 12 011-2021	Determination of Esters - Gas Chromatographic Method	18 21
15.	F35AI 13.011.2021	using Capillary Column	16-21
14	FSSAL13.012-2021	Determination of Esters - Gas Chromatographic Method	<u> </u>
14.	155AI 15.012.2021	using Packed Column	22-23
15.	FSSAI 13.013:2021	Determination of Higher Alcohols - Titrimetric Method	24-25
16	FSSAL13.014-2021	Determination of Higher Alcohols - Spectrophotometric	76 77
10.	155AI 15.014.2021	Method	20-27
17	FSSAL13.015·2021	Determination of Higher Alcohols - Gas	28
17.	155/1113.013.2021	Chromatographic Method using Capillary Column	20
18	FSSAL13.016·2021	Determination of Higher Alcohols - Gas	29
10.	155/H 15.010.2021	Chromatographic Method using Packed Column	2)
		Determination of Higher Alcohols - Gas	
19.	FSSAI 13.017:2021	Chromatographic Method using Calibration Curves of	30-31
		Standards	
20.	FSSAI 13.018:2021	Determination of Aldehydes - Titrimetric Method	32
21	ESSAL 13 010.2021	Determination of Aldehydes - Gas Chromatographic	33
21. F55AI 15.019:202	1001110.017.2021	Method using Capillary Column	55
22.	FSSAI 13.020:2021	Determination of Aldehydes - Gas Chromatographic	34

		Method using Packed Column	
23.	FSSAI 13.021:2021	Determination of Furfural - Colorimetric Method	35-36
24	ESSAL 12 022-2021	Determination of Furfural - Gas Chromatographic	27
24.	F55AI 15.022.2021	Method	57
25	ESSAL 12 022-2021	Determination of Copper / Iron - Atomic Absorption	28 20
25. F55AI 15.025.2021		Spectrophotometric (AAS) Method	30-39
26.	FSSAI 13.024:2021	Determination of Copper using Diethyldithiocarbamate	40-42
27.	FSSAI 13.025:2021	Determination of Copper using Potassium Ferrocyanide	43-45
28.	FSSAI 13.026:2021	Determination of Copper - Cuperthol Method	46-47
20	ESSAL 13 027-2021	Determination of Methyl Alcohol - Spectrophotometric	48.40
29.	155AI 15.027.2021	Method	40-49
30	ESSAL13 028-2021	Determination of Methyl Alcohol - Gas	50 51
50.	155AI 15.020.2021	Chromatographic Method	50-51
		Determination of Total Sulphur Dioxide (for Wines	
31.	FSSAI 13.029:2021	only) - Modified Monier Williams Method (Shiphton's	52-53
		Method)	
32.	FSSAI 13.030:2021	Determination of Total Sulphur Dioxide (for Wines	54-56
22	EGG A L 12 021 0001	only) - Rosaniline Colorimetric Method	57 50
33.	FSSAI 13.031:2021	Determination of Tannins (for Wines only)	57-58
34.	FSSAI 13.032:2021	Determination of Extracts in Wines	59
35.	FSSAI 13.033:2021	Determination of Sorbic Acid	60
36.	FSSAI 13.034:2021	Determination of Reducing Sugar - Lane and Eynon	61-63
27		(Fehling) Method	
37.	FSSAI 13.035:2021	Determination of Reducing Sugar – DNS Method	
38.	FSSAI 13.036:2021	Determination of Individual Sugars – HPLC 66-6	
39.	FSSAI 13.037:2021	Determination of Total Sugar – Fehling Solution Method 68	
40.	FSSAI 13.038:2021	Determination of Total Sugar - Anthrone Method 72-73	
41.	FSSAI 13.039:2021	Determination of Carbonation (GV)	74
42.	FSSAI 13.040:2021	Determination of pH	75-78
		Determination of Anethole - Gas Chromatography	
43.	FSSAI 13.041:2021	determination of Trans-anethole in Spirit Drinks of Viti-	79-81
		vinicultural origin	
44.	FSSAI 13.042:2021	Determination of Trans-anethole in Spirit Drinks	82-83
		containing large amount of Sugar by GC Analysis	02 00
		Determination of the Principal Compounds Extracted	
45.	FSSAI 13.043:2021	from Wood during Ageing of Spirit Drinks of Viti-	84-86
		vinicultural origin	
		Determination of α-dicarbonyl Compounds in Spirituous	
46.	FSSAI 13.044:2021	Beverages of Viti-vinicultural Origin by Gas	87-90
		Chromatography after derivation by 1,2 diaminobenzene	
<i>4</i> 7	FSSAI 13 045:2021	Determination of Propanol-2-ol by Gas	91_92
т/.	100/1113.043.2021	Chromatography	71-72
48.	FSSAI 13.046:2021	Determination of Absorbance Test in UV light of	93

		Neutral Alcohol	
49.	FSSAI 13.047:2021	Determination of Ethyl Carbamate	94-95
50.	FSSAI 13.048:2021	Determination of Colour Intensity	96
51. FSSAI 13.049:2021	ESSAL13 040·2021	Determination of Calcium by Atomic Absorption	07.08
	Spectrophotometric (AAS) Method	97-98	
52	ESSAL 13 050·2021	Determination of Lead by Atomic Absorption	99 100
52. F 55AI 15.050.2021	Spectrophotometric (AAS) Method	<i>99</i> -100	
53. FSSAI 13.051:2024	Determination of Ochratoxin A in Wine and other	101 103	
	155AI 15.051.2024	Fermented Alcoholic Beverages	101-105
53.	Annexure I		104-123
54.	Annexure-II		124

Note: The test methods given in the manual are standardized / validated/ taken from national or international methods or recognized specifications, however it would be the responsibility of the respective testing laboratory to verify the performance of these methods onsite and ensure that it gives proper results before putting these methods in to use.

MANUAL FOR ANALYSIS OF ALCOHOLIC BEVERAGES

1.0 Alcoholic Beverages and Types

Alcoholic beverages comprise a large group of beverages that contain varying amounts of alcohol (ethanol). These are produced by fermentation of grains, fruits, or other sources of sugar. The consumption of alcohol plays an important social role in many cultures. Most countries have laws regulating the production, sale, and consumption of alcoholic beverages. Following types alcoholic beverages are produced industrially and consumed.

- Rum: Rum is a liquor made by fermenting then distilling sugarcane molasses or sugarcane juice, has a typical alcohol concentration of 40% ABV. The distillate, a clear liquid, is usually aged in oak barrels.
- Gin: Gin is a distilled alcoholic drink (have anywhere from 35% to 55% ABV) that derives its predominant flavour from juniper berries (*Juniperus communis*). Gin originated as a medicinal liquor made by monks and alchemists across Europe, particularly in southern France, Flanders and the Netherlands, to provide aqua vita from distillates of grapes and grains.
- Whisky: Whisky is a type of distilled alcoholic beverage (ABV of whiskey ranges from 40% to 50%) made from fermented grain mash or by distilling beer. Various grains are used for different varieties, including barley, corn, rye, and wheat. Whisky is typically aged in wooden casks, generally made of charred white oak
- Brandy: Brandy is a liquor produced by distilling wine. Brandy generally contains 35–60% alcohol by volume and is typically consumed as an after-dinner digestif. Some brandies are aged in wooden casks. Varieties of wine brandy can be found. The most renowned are Cognac and Armagnac.
- Beer: Beer (have ~5% ABV) is brewed from cereal grains—most commonly from malted barley, wheat, maize, and rice.
- Vodka: Vodka (have ~40% ABV) is a clear distilled alcoholic beverage. In general, it is made by distilling the liquid from cereal grains (e.g., wheat) and vegetables (e.g., Potatoes) containing starch, that are fermented with yeast. There are different varieties originating in Poland, Russia and Sweden. It is composed primarily of water and ethanol, but sometimes with traces of flavorings (essences of herbs, fruits, grasses, and spices). Some modern brands are using fruits, honey or maple sap as the base.
- Wine: Wine is an alcoholic drink typically made from fermented grape juice. Yeast consumes the sugar in the grapes and converts it to ethanol, carbon dioxide, and heat. Different varieties of grapes and strains of yeasts produce different styles of wine. The range of ABV for unfortified wine is about 5.5% to 16%, with an average of 11.6%.
- Rice Wine: It is an alcoholic beverage fermented and distilled from rice and typically has an alcohol content of 18-25% ABV. Rice wine is made by the fermentation of rice starch that has been converted to sugars. Microbes are the source of the enzymes that convert the starches to sugar. It is traditionally consumed in East Asia, Southeast Asia and Northeast India at formal dinners and banquets and in cooking.

- Toddy: Toddy (have 4-6% ABV), known by several local names, is an alcoholic beverage created from the sap of various species of palm tree such as the palmyra, date palms, and coconut palms
- Fenny (Cashew & Coconut etc.): Fenny (have 42-43 ABV), is a spirit produced in Goa, India. The two most popular types of feni are cashew fenny and toddy coconut palm fenny, depending on the original ingredient; however, many other varieties are sold.

2.0 General Glassware and Apparatus

- 1. Beakers (different sizes)
- 2. Conical flasks with and without lids (different sizes)
- 3. Round bottom flasks (different sizes)
- 4. Pipettes (different sizes)
- 5. Burettes (different sizes)
- 6. Measuring cylinders (different sizes)
- 7. Buchner funnels (different sizes)
- 8. Air condensers
- 9. Water condensers
- 10. Distillation heads
- 11. Receiving adapters
- 12. Ground glass joints
- 13. Thermometers (different minimum and maximum temperatures in centigrade degrees)
- 14. Wash bottles (different sizes)
- 15. Separating funnels (different sizes)
- 16. Petri dishes (different sizes)
- 17. Weighing balances (upto milligram)
- 18. Weighing balances (upto gram)
- 19. Air Oven
- 20. Water bath
- 21. Whatman filter papers (different numbers)

Image: State in the state and provide state and state provide state and provide state and provide state p
Attribute Attribute Attribute Method No. FSSAI 13.001:2021 Revision No. & Date 0.0 Scope Pycnometer Method or Hydrometer Method (after distillation)-Specific gravity of the alcoholic beverages can be determined. The method is applicable to all alcoholic beverages. Principle It is determined by distilling the alcoholic beverage and measuring the specific gravity of the distillate. Sp. gravity Vs Alcohol percent (Refer Annexure - I and Annexure - II). Apparatus /Instruments 1. General Glassware and apparatus (Refer 2.0 at page no. 2). 2. Distillation Unit: Distillation flask of 500 mL capacity is connected to water cooled condenser and the tip of the condenser is extended through a glass tube with a bulb by means of standard B14 joint. The other end of the glass tube should reach the bottom of the receiver flask.
Method No.FSSAI 13.001:2021Revision No. & Date0.0ScopePycnometer Method or Hydrometer Method (after distillation)-Specific gravity of the alcoholic beverages can be determined. The method is applicable to all alcoholic beverages.PrincipleIt is determined by distilling the alcoholic beverage and measuring the specific gravity of the distillate. Sp. gravity Vs Alcohol percent (Refer Annexure - I and Annexure - II).Apparatus /Instruments1. General Glassware and apparatus (Refer 2.0 at page no. 2). 2. Distillation Unit: Distillation flask of 500 mL capacity is connected to water cooled condenser and the tip of the condenser is extended through a glass tube with a bulb by means of standard B14 joint. The other end of the glass tube should reach the bottom of the receiver flask.
Scope Pycnometer Method or Hydrometer Method (after distillation)-Specific gravity of the alcoholic beverages can be determined. The method is applicable to all alcoholic beverages. Principle It is determined by distilling the alcoholic beverage and measuring the specific gravity of the distillate. Sp. gravity Vs Alcohol percent (Refer Annexure - I and Annexure - II). Apparatus /Instruments 1. General Glassware and apparatus (Refer 2.0 at page no. 2). 2. Distillation Unit: Distillation flask of 500 mL capacity is connected to water cooled condenser and the tip of the condenser is extended through a glass tube with a bulb by means of standard B14 joint. The other end of the glass tube should reach the bottom of the receiver flask.
Image: Principle the alcoholic beverages can be determined. The method is applicable to all alcoholic beverages. Principle It is determined by distilling the alcoholic beverage and measuring the specific gravity of the distillate. Sp. gravity Vs Alcohol percent (Refer Annexure - I and Annexure - II). Apparatus /Instruments 1. General Glassware and apparatus (Refer 2.0 at page no. 2). 2. Distillation Unit: Distillation flask of 500 mL capacity is connected to water cooled condenser and the tip of the condenser is extended through a glass tube with a bulb by means of standard B14 joint. The other end of the glass tube should reach the bottom of the receiver flask.
beverages. Principle It is determined by distilling the alcoholic beverage and measuring the specific gravity of the distillate. Sp. gravity Vs Alcohol percent (Refer Annexure - I and Annexure - II). Apparatus /Instruments 1. General Glassware and apparatus (Refer 2.0 at page no. 2). 2. Distillation Unit: Distillation flask of 500 mL capacity is connected to water cooled condenser and the tip of the condenser is extended through a glass tube with a bulb by means of standard B14 joint. The other end of the glass tube should reach the bottom of the receiver flask.
Principle It is determined by distilling the alcoholic beverage and measuring the specific gravity of the distillate. Sp. gravity Vs Alcohol percent (Refer Annexure - I and Annexure - II). Apparatus /Instruments 1. General Glassware and apparatus (Refer 2.0 at page no. 2). 2. Distillation Unit: Distillation flask of 500 mL capacity is connected to water cooled condenser and the tip of the condenser is extended through a glass tube with a bulb by means of standard B14 joint. The other end of the glass tube should reach the bottom of the receiver flask.
gravity of the distillate. Sp. gravity Vs Alcohol percent (Refer Annexure - I and Annexure - II). Apparatus /Instruments 1. General Glassware and apparatus (Refer 2.0 at page no. 2). 2. Distillation Unit: Distillation flask of 500 mL capacity is connected to water cooled condenser and the tip of the condenser is extended through a glass tube with a bulb by means of standard B14 joint. The other end of the glass tube should reach the bottom of the receiver flask.
Annexure - II). Apparatus /Instruments 1. General Glassware and apparatus (Refer 2.0 at page no. 2). 2. Distillation Unit: Distillation flask of 500 mL capacity is connected to water cooled condenser and the tip of the condenser is extended through a glass tube with a bulb by means of standard B14 joint. The other end of the glass tube should reach the bottom of the receiver flask.
 Apparatus /Instruments General Glassware and apparatus (Refer 2.0 at page no. 2). Distillation Unit: Distillation flask of 500 mL capacity is connected to water cooled condenser and the tip of the condenser is extended through a glass tube with a bulb by means of standard B14 joint. The other end of the glass tube should reach the bottom of the receiver flask.
2. Distillation Unit: Distillation flask of 500 mL capacity is connected to water cooled condenser and the tip of the condenser is extended through a glass tube with a bulb by means of standard B14 joint. The other end of the glass tube should reach the bottom of the receiver flask.
cooled condenser and the tip of the condenser is extended through a glass tube with a bulb by means of standard B14 joint. The other end of the glass tube should reach the bottom of the receiver flask.
with a bulb by means of standard B14 joint. The other end of the glass tube should reach the bottom of the receiver flask.
should reach the bottom of the receiver flask.
⊨ particular part
and an condensar
Claisen
adaptor
water out 7
water in
distillate
(Figure is adopted from FSSAI Manual of Methods of Analysis of Foods:
Alcoholic beverages, 2019, Page 5).
3. Pycnometer: 50 mL capacity/ SG Hydrometer, Short range (0.96 – 1.00).
4. Thermometer: 0-100 °C
5. Volumetric flask: 200 mL capacity
Materials and reagents Alcoholic beverages
Nethod of Analysis 1. Transfer exactly 200 mL of alcoholic drink into a 500 mL distillation flask
2 Distil the contents in shout 25 min and collect the distillate in a 200 mJ
2. Distil the contents in about 55 min and contect the distillate in a 200 mL volumetric flask till the volume almost reaches the mark
3 Bring the distillate to room temperature 20 °C and make up to volume with
distilled water and mix thoroughly
Find out the specific gravity of the distillate as follows:
4. Take a clean and dry pychometer and weigh it empty along with the stopper at 20 °C (W)
5. Fill it with the liquor sample distillate to the brim and insert the stopper active of the stopper active o

	6. Wipe the Liquid that spills out using water absorbing filter paper and weigh at 20 °C(W1).
	7. Next remove the liquor sample distillate and wash it with distilled water.
	8. Fill the pycnometer with distilled water in the same manner as described above
	and at 20 °C take the weight (W2).
Calculation with units of	W1-W2
expression	Specific gravity= $\frac{W_2 - W}{W_2 - W}$
•	W: Weight of Empty Pycnometer
	W1: Weight of Empty Pycnometer with liquor sample
	W2: Weight of Empty Pycnometer with water
	Find out the corresponding alcohol percent by volume from the table showing
	Specific Gravity Vs Alcohol percent (Refer Annexure I).
	Alternatively, use a SG hydrometer to find out the specific gravity (SG) and use the
	following equation to convert SG to % Alcohol.
	% Alcohol (v/v) = $8610.6 - (16584 \times SG) + (7973.3 \times SG 2)$
	(One can use computer program to automate this process).
Reference	1. IS Standard – IS 3752:2005, Alcoholic Drinks, Methods of Test
	2. IS Standard – IS 7585:1995, Wines, Methods of Analysis
Approved by	Scientific Panel on Methods of Sampling and Analysis

	Determination of Ethyl Alcohol Content - Distillation Method (for products
FOOD SAFETY AND STANDARDS	containing high volatile acids)
AUTHORITY OF INDIA Inspiring Trust, Assuring Safe & Nutritious Food	
Ministry of Health and Family Weltare, Government of India	ESSAL12.002:2021 Bowision No. & Data 0.0
Seene	Distillation mathed is used for alcoholia haverages products containing high
Scope	volatile acids.
Caution	 Petroleum ether: Harmful when inhaled in high concentrations or ingested. Petroleum ether may cause dizziness and drowsiness if inhaled, and high concentrations may result in central nervous system depression, and loss of consciousness. Sodium hydroxide: Sodium hydroxide is strongly irritating and corrosive. It can cause severe burns and permanent damage to any tissue that it comes in contact with. Sodium hydroxide can cause hydrolysis of proteins, and hence can cause burns in the eyes which may lead to permanent eye damage.
Principle	Volatile acids were extracted into petroleum ether from the Sodium chloride saturated alcoholic beverage solution and aqueous alcoholic layer distilled and
Annaratus /Instruments	1. General Glassware and apparatus (Refer 2.0 at page no. 2)
Apparatus / Instruments	 Volumetric flask 200 mL canacity
	3. Separatory funnels, 500 mL capacity.
	4. Distillation unit with assembly
Materials and Reagents	1. Alcoholic beverages
	2. Sodium chloride
	3. Petroleum ether 40- 60 °C grade
	4. Sodium hydroxide
	5. Phenolphthalein indicator
	6. Rectified spirit
Preparation of reagents	1. Sodium hydroxide solution (0.1N): Sodium hydroxide (4g) dissolved in 1 L
	water. 2 Phonolnethaloin indicator solution Dissolve 1.0 g of phonolnethaloin in 100
	2. Thenoiphthaeth indeator solution - Dissolve 1.0 g of phenoiphthaeth in 100 mL rectified spirit
Method of Analysis	1. Measure 200 mL of liquor sample in a volumetric flask.
	2. Transfer to aseparatory funnel and wash the volumetric flask with about 100
	mL water.
	3. Add sodium chloride powder so that the solution becomes almost saturated with NaCl.
	4. Add about 100 mL of petroleum ether and shake for 2-3 min.
	5. Allow the layers to settle and transfer the lower layer to the distillation flask.
	6. Add about 20-30 mL of saturated sodium chloride solution to the petroleum ether layer and gently shake.
	7. Allow again to settle and transfer the aqueous layer to the distillation flask.
	8. Mix gently and make the solution just alkaline with NaOH solution using
	9 Add little numice stone and connect the distillation assembly via condensor
	to the volumetric flask.
	10. Distill gently and collect the distillate in the volumetric flask almost to the
	mark.
	11. Bring the contents to room temperature and make up the volume with

 $5 \mid M \circ M - A \mid c \circ h \circ l \mid c \quad B \mid e \vee e \mid r \mid a \mid g \mid s$

	distilled water and mix well.
Calculation with units of	Determine the specific gravity of the distillate as described in earlier section and
expression	find out the corresponding alcohol percent by volume from the table showing Sp.
	gravity Vs Alcohol percent.
Reference	1. IS Standard – IS 3752:2005, Alcoholic Drinks, Methods of Test
	2. IS Standard – IS 7585:1995, Wines, Methods of Analysis
Approved by	Scientific Panel on Methods of Sampling and Analysis

	Gas Chromatography-FID Method of Alcohol Estimation using	
FOOD SAFETY AND STANDARDS	Chromosorb Support Columns	
AUTHORITY OF INDIA Inspiring Trust, Assuring Safe & Nutritious Food		
Ministry of Health and Family Welfare, Government of India		
Niethod No	FSSAI 13.003:2021 Revision No. & Date 0.0	
Scope	Gas Chromatography-Flame Ionization Detection Method of alcohol estimation	
Careff are	using chromosorb support columns and is applicable to all alcoholic beverages	
Caution	Propanol: Exposure to propyl alcohol might irritate eyes, nose, and throat.	
	Exposure to high concentrations can cause headache, drowsiness, dizziness,	
	confusion, nausea and vomiting. Propyl alcohol may cause liver damage. Propyl	
Dringinla	n Dromonol intermol stondard is added to comple and sthenol is determined by	
Frincipie	GC_{-} flame ionization detection	
Annaratus / Instruments	1 General Glass ware and annaratus (Refer 2.0 at page no. 2)	
rppuratus / mstruments	2 Gas chromatograph - With the flame ionization detector and $6ft \times 1/8in$	
	$(1.8 \text{m} \times 0.3 \text{cm})$ stainless steel or glass column containing 80-100 mesh	
	chromosorb 103. He or N ₂ carrier gas 20 mL/min; injector temperature 175	
	°C, column temperature 185 °C isothermal (adjust temperature so ethanol	
	elutes in 1min, n-propanol in 1.6 min); detector temperature 250 °C; chart	
	speed and attenuation as required based on instrument used.	
	Note: - Optimum operating conditions may vary with column and instrument	
	used and must be determined by using standard solutions. Adjust the parameters	
	for maximum peak sharpness and optimum separation.	
Materials and reagents	1. Alcoholic beverages.	
	2. n-Propanol.	
	3. Ethanol.	
Preparation of reagents	1.n-Propanol- Internal standard 5% aqueous stock solution. Refrigerate.	
	2. Ethanol standard solutions - 3,4, 5, 6, 7, and 8% aqueous ethanol solutions.	
	Determine exact % ethanol by pycnometer or hydrometer. Alternatively,	
	prepare standard solutions by quantitative dilution of concentrated ethanol	
	solution analyzed by one of above techniques. Keep solutions reingerated.	
Wiethod of analysis	1. Pipel 5.0 mL ethanol standard solutions into separate glass-stoppered flasks.	
	2. Add 5.0 III. Internal standard solution to each and IIIX well. 3. De-carbonate beer by filtering through S&S 560 or equivalent paper. Pipet	
	5.0 mL into glass-stoppered flask Add 5.0 mL aqueous n-propagol internal	
	standard solution. Mix thoroughly by swirling.	
	4. Inject 0.2 μ L of each standard solution in duplicate and measure peak heights	
	(integrator may be used). Calculate ratio of ethanol to n-propanol peaks and	
	average for each concentration. Plot ratio against concentration and calculate	
	slope of line. Repeat analysis of 5% ethanol standard solution each day.	
	5. Inject 0.2 µL of beverage (prepared beer solution) onto GC column, and	
	determine ratio of ethanol to n-propanol peaks.	
Calculation with units of	Ethanol, $\%$ (v/v) = (peak area ethanol / peak area n - propanol)	
expression		
Reference	AOAC 984.14, 1988, Gas chromatographic method	
Approved by	Scientific Panel on Methods of Sampling and Analysis	

FOOD SAFETY AND STANDARDS AUTHORITY OF INDIA Inspining Trust, Assuring Safe & Nutritious Food Ministy of Neath and Family Weiter, Government of India	Determination of Ethyl	Alcohol Content - Dichrom	ate Oxidation Method
Method No.	FSSAI 13.004:2021	Revision No. & Date	0.0
Scope	Dichromate oxidation m alcoholic beverages.	ethod is used to determine	the alcohol content in
Caution	 Sulphuric acid: Concentrated sulfuric acid is extremely corrosive and can cause serious burns when not handled properly. This chemical is unique because it not only causes chemical burns, but also secondary thermal burns as a result of dehydration. This dangerous chemical is capable of corroding skin, paper, metals, and even stone in some cases. If sulfuric acid makes direct contact with the eyes, it can cause permanent blindness. If ingested, this chemical may cause internal burns, irreversible organ damage, and possibly death. Potassium dichromate: Corrosive. Causes severe burns to every area of contact. Harmful if swallowed or inhaled. Affects the respiratory system, liver, kidneys, eyes, skin and blood. Ferrous Ammonium Sulfate: Ferrous Ammonium Sulfate can affect, when breathed in. Contact can irritate the skin and eyes. Breathing Ferrous Ammonium Sulfate can irritate the nose and throat causing coughing and wheezing. High exposure may cause nausea, stomach pain, diarhea, vomiting and drowsiness. 1,10-Phenanthroline: 1,10-Phenanthroline is absorbed through the skin. Symptoms/effects after inhalation: Slight irritation. Symptoms/effects after 		
Principle	Wine is steam distilled in concentration. Oxidation of Unreacted dichromate is solution, using o-phenanth	nto acidified $K_2Cr_2O_7$ solution of ethyl alcohol to CH_3COOH determined by titration with s proline as indicator.	n of known volume and is completed by heating. standard $Fe(NH_4)_2(SO_4)_2$
Apparatus / Instruments	 General Glassware and Micro Kjeldahl appara electric apparatus may with pinch clamps att chamber with distilled transformer for voltage 	apparatus (Refer 2.0 at page r atus with gas micro-burner. be used. Apparatus must hav ached to drain line of still t d water. Connect electric ou reduction.	no. 2). Alternatively, Kirk-type re 3-way stopcock or tee o allow filling of outer atlet of still to variable

	(Figure is adopted from FSSAI Manual of Methods of Analysis of Foods: Alcoholic beverages, 2019, Page 10).
Materials and Reagents	1. Alcoholic beverages
	2. Potassium dichromate 3. Sulphuric acid
	4. Ferrous ammonium sulfate
	5. 1,10-Phenanthroline
	6. Ferrous sulfate
Preparation of reagents	 Potassium dichromate solution-Add 325 mL H₂SO₄ to ca 400 mL H₂O in 1 L volumetric flask. Mix and cool to 80- 90 °C. Add 33.768 g K₂Cr₂O₇ (primary standard). Dissolve, cool, and dilute to volume with H₂O at 20 °C. Ferrous ammonium sulfate solution - Dissolve 135.5 g FeSO₄ (NH₄)₂SO₄·6H₂O in ca 500 mL H₂O in 1 L volumetric flask. Add 30 mL H₂SO₄, Dilute to volume with H₂O at 20 °C. 1,10-Phenanthroline ferrous sulfate indicator -Dissolve 0.695 g FeSO₄.7H₂O in ca 50 mL H₂O, add 1.485 g o-phenanthroline·H₂O, and dilute to 100 mL with H₂O.
Method of Analysis	 By micro Kjeldahl apparatus 1. To begin distillation, boil H₂O in steam generator. Open steam trap side tube. Turn 3-way stopcock so that steam from trap vents through side tube and distilling bulb is closed. 2. Place 25 mL K₂Cr₂O₇ solution in 50 mL Erlenmeyer under condenser with tip below surface of solution, Close stopcock and place small amount H₂O in funnel. Distilling bulb is empty and micro-burner is not lighted. Transfer 1 mL test portion as follows: Fill 1 mL pipet slightly over mark, and wipe excess wine from exterior. Hold pipet vertical with tip touching inside neck of test bottle, drain to mark. Drain pipette completely into funnel. Open stopcock to drain test portion into still then reclose. Add small amount H₂O to funnel, drain into still, and rinse with H₂O until distilling bulb is half filled. 3. Place H₂O in funnel to ensure seal. Close steam trap discharge with pinch clamp. Open 3-way stopcock, permitting steam to enter bulb while vent is closed. Light micro-burner. 4. Distil until receiving flask contains ca 40 mL, lower flask, and rinse outside

	5. Stopper flask and immerse to shoulder in 60±2 °C H ₂ O. Admit cold water
	into steam generator to flush contents of distilling bulb into steam trap.
	6. Refill bulb with H ₂ O, flush again, open trap discharge, and vent 3-way
	stopcock. Apparatus is now ready for next test portion.
	By electric apparatus
	1. Connect electric outlet of apparatus to variable transformer set at ca 60-70%-
	line voltage. Open condenser stopcock to let cold water flow through
	condenser.
	2. Fill outer chamber of still with distilled water to well above heating coil by opening 3-way stopcock or pinch clamp on drain line tee to distilled H ₂ O source.
	3. Transfer 1 mL test portion by filling 1 mL pipet and place pipet tip in contact
	with inside of funnel with stopcock closed and with funnel containing small
	amount distilled H ₂ O so that pipette tip rests just above H ₂ O. Let pipette drain
	15 s after discharge of test portion.
	4. Open stopcock and drain test portion-H ₂ O mixture into inner chamber of still
	then close stopcock. Add small amount H ₂ O to funnel, and then drain into
	inner chamber of still.
	5. Close stopcock and add H_2O to funnel to ensure seal. Place 25 mL $K_2Cr_2O_7$
	solution in 50 mL Erlenmeyer placed under condenser so that tip of
	condenser is below surface of solution.
	6. Turn on variable transformer and steam distils until receiving flask contains
	7. Lower flask, and rinse outside of condenser outlet with distilled water, letting ringe drain into flask. Steamen flask and immense to should a in $(0^{\circ} + 2^{\circ})^{\circ}$
	Thise drain into flask. Stopper flask and immerse to shoulder in $60^{\circ} \pm 2^{\circ} C$
	Π ₂ Ο. 8 Turn off variable transformer
	0. Residue in inner chamber is flushed out to outer chamber automatically by
	vacuum action when current is shut off.
	10. Open funnel stopcock and add distilled water; close to rinse inner chamber
	into outer chamber and drain line again by vacuum. Repeat with second rinse.
	11. Open 3-way stopcock or pinch clamp on drain line tee to drain outer chamber.
	Close, then open to distilled water source and fill outer chamber as before.
	Apparatus is now ready for next test portion.
	1 Demove flack from both after 20.25 min
	2 Rinse contents into 500 mL flask with H ₂ O
	3 Titrate with FeSO (NH_1) -SO $_4$ solution to almost clear green in front of
	daylight fluorescent light, add 3 drops indicator, and titrate to end point
	(change is from blue-green to brown) (V mL).
	4. Since $FeSO_4(NH_4)_2SO_4$ solution is slowly oxidized by air, perform a blank
	determination daily by titrating 25 mL K ₂ Cr ₂ O ₇ (V' mL). Discard
	$FeSO_4(NH_4)_2SO_4$ solution that has been standing in buret >30 min.
Calculation with units of	Calculate % alcohol by volume = $25.00 - (25 \times V/V')$
expression	
	V –Volume of $\text{FeSO}_4(\text{NH}_4)_2\text{SO}_4$ solution used for reaction.
Deferrer	v - v olume of FeSO ₄ (NH ₄) ₂ SO ₄ solution used for blank.
Keterence	AUAC 969.12-1988, alcohol in wines by dichromate oxidation
Approved by	Scientific Panel on Methods of Sampling and Analysis

	Gas Chromatography-FID Method of Ethyl Alcohol Estimation using				
FOOD SAFETY AND STANDARDS	Carbowax (on carbopack support) Column				
AUTHORITY OF INDIA Inspiring Trust, Assuring Safe & Nutritious Food					
Ministry of Health and Family Welfare, Government of India		D (0.0			
Method No.	FSSAI 13.005:2021 Revision No. &	z Date 0.0			
Scope	Gas Chromatography/FID method using carbowax (on carbopack support)				
Caution	2 Dromonoli Non torrio in contrast with altin (LD50 altim 5000 mm/l)))				
Caution	cause drowsiness or dizziness Causes serious eve irritation Symptoms/effects				
	after inhalation: exposure to high concentrations: coughing				
Principle	Ethyl alcohol content is determined by	mixing known internal standard and			
	injecting to GC. Peak responses of eth	yl alcohol and internal standard are			
	compared and determined.	y			
Apparatus/ Instruments	1. General Glassware and apparatus (Refe	er 2.0 at page no. 2).			
	2. Gas chromatograph - With flame ioniz	zation detector, integrator, heated on-			
	column injector, and 6 ft (1.8 m) x 2m	nm id glass column packed with 0.2%			
	Carbowax 1500 on 80-100 mesh Carbo	ppack C.			
	3. Diluter -Capable of $\pm 0.1\%$ precision.				
Materials and Reagents	1. Alcoholic beverages				
	2. 2-propanol				
	3. Ethanol				
Preparation of reagents	1. Internal standard solution - 0.2% (v/v) 2-propanol in H_2O .				
	2. Alcohol standard solution - Prepare Alcohol-H ₂ O solution containing				
	approximate % alconol expected in test portion. Determine exact % alconol by pychometer, refractometer, hydrometer, or other appropriate $\Delta O \Delta C$				
	by pychometer, refractometer, hydro	tarial 1500 Stabilized Wine (NIST)			
	method, or use Standard Reference Ma	teriai 1590, Stabilized while (NIST).			
Method of Analysis	1 Dilute alcohol standard solution 1:100	with internal standard solution			
Witchiou of Timurysis	2 Inject at least three 1.0 µL aliquots a	after adjusting the air and carrier has			
	flow rates as well as electrometer	sensitivity as mentioned below and			
	determine average response ratio of	area of alcohol peak to area of 2-			
	propanol peak (RR').	-			
	3. Dilute test portion 1:100 with internal s	standard solution.			
	4. Inject 1.0 μ L, and determine response ratio (RR).				
	5. Adjust air and H_2 for flame detector to optimum for carrier gas flow of				
	column used. Adjust electrometer sensitivity to provide \geq 50,000 counts of				
	integrator count for internal standard peak.				
	6. Gas chromatograph specifications:				
		1N ₂			
	Flow rate, mL/min	15			
	Oven temperature	105 °C			
	Injector temperature 175 °C				
	Detector temperature 175 °C				

Calculation with units of	Alcohol % = (RR × % alcohol in standard) \div RR'		
expression	RR-Response ratio with known quantities.		
	RR'- Response ratio with test sample		
Reference	AOAC 983.13-1988, Alcohol in wines. Gas chromatographic		
	method		
Approved by	Scientific Panel on Methods of Sampling and Analysis		

	Determination of Residue on Evaporation				
SSAT FOOD SAFETY AND STANDARDS AUTHORITY OF INDIA					
Inspiring Trust, Assuring Safe & Nutritious Food Meining of Health and Family Welfare, Government of India					
Method No.	FSSAI 13.006:2021 Revis	ion No. & Date	0.0		
Scope	Organic or inorganic solids pres	ent in alcoholic bevera	ges are residues. It may		
	include high boiling liquids also.				
Principle	By evaporation of beverages on b	oiling water bath, resid	lue is determined.		
Apparatus / Instruments	1. General Glassware and appar	atus (Refer 2.0 at page	no. 2).		
	2. Hot Air oven.				
	3. Water bath.				
	4. Desiccator.				
	5. Glass bowl, 250 mL capacity				
	6. Volumetric flask, 200 mL.				
Method of Analysis	1. Transfer 200 mL of alcoholic	drink into a dried, wei	ghed (W) glass bowl and		
	evaporate on a water bath.				
	2. Wipe the external sides of the	ne bowl and keep in a	n air oven maintained at		
	100 ± 10 °C for 2 h.				
	3. Cool in a desiccator and weigh the dish (W1).				
	4. Repeat till constant weight is obtained.				
	5. Calculate the % residual solids.				
Calculation with units of	Residue on evano	ration $\%\left(\frac{W}{W}\right) = \frac{W1 - W1}{W1 - W1}$	-W = 100		
expression	$\frac{1}{\sqrt{v}} = \frac{1}{\sqrt{v}} \times 100$				
	Where, $WI =$ weight of glass boy	vl with dry residue, in g			
	W = weight of empty glass bowl,	in g			
	v = volume of liquor taken for th	e estimation, in mL	1 ()		
Keterence	1. IS Standard – IS $3/52:2005$, A	Icoholic Drinks, Metho	ods of Test		
	2. IS Standard – IS /585:1995, W	ines, Methods of Analy	ys1s		
Approved by	Scientific Panel on Methods of Sa	ampling and Analysis			

Determination of Total Acids (as Tartaric Acid) - Method I (for colourless liquors)

Ministry of Health and Family Welfare, Government of India					
Method No.	FSSAI 13.007:2021	Revision No. & Date	0.0		
Scope	Method I – This method	is used to determine total acid	ity of colorless alcoholic		
	beverages only.				
Caution	Sodium hydroxide: Sodiu	m hydroxide is strongly irritat	ing and corrosive. It can		
	cause severe burns and pe	ermanent damage to any tissue	that it comes in contact		
	with. Sodium hydroxide c	can cause hydrolysis of protein	ns, and hence can cause		
	burns in the eyes which m	ay lead to permanent eye dama	age.		
Principle	Total acids present in a	alcoholic beverages are estin	nated using acid -base		
	titration using phenolphth	alein as indicator.			
Apparatus /Instruments	1. General Glassware an	d apparatus (Refer 2.0 at page	no. 2).		
Materials and Reagents	1. Sodium hydroxide.				
	2. Phenolphthalein indicator.				
	3. Rectified spirit.				
Preparation of reagents	1. Sodium hydroxide solu	tion (0.05N): Sodium hydroxi	de (2 g) dissolved in 1 L		
	water.				
	2. Phenolphthalein indicator solution - Dissolve 1.0 g of phenolphthalein in 100				
	mL rectified spirit.				
Method of Analysis	1. Take 50 mL of liquor sample and add about 200 mL neutral distilled water.				
	2. Titrate against standard sodium hydroxide using Phenolphthalein indicator.				
Calculation with units of	Total acids as tartaric acid, g per 100 liters absolute alcohol				
expression	$= (V \times 0.00375 \times 100 \times 1000 \times 2)/V_1$				
	Where, V_1 = alcohol % by volume				
	V = volume of std. NaOH used for titration, in mL				
Reference	1. IS Standard – IS 3752:2005, Alcoholic Drinks, Methods of Test				
	2. IS Standard – IS 7585:1995, Wines, Methods of Analysis				
Approved by	Scientific Panel on Metho	ds of Sampling and Analysis			

FOOD SAFETY AND STANDARDS AUTHORITY OF INDIA Inspiring Trust, Assuring Safe & Nutritious Food Mentry of Heath and Family Weltaw, Covernment of India	Determination of Total Acids (as Tartaric Acid) - Method II (for coloured liquors such as Wine, Toddy)				
Method No.	FSSAI 13.008:2021	Revision No. & Date	0.0		
Scope	Method II – This method beverages such as Wine, 7	is used to determine total acid Foddy.	ity of coloured alcoholic		
Caution	Sodium hydroxide: Sodiu cause severe burns and po with. Sodium hydroxide o burns in the eyes which m	Sodium hydroxide: Sodium hydroxide is strongly irritating and corrosive. It can cause severe burns and permanent damage to any tissue that it comes in contact with. Sodium hydroxide can cause hydrolysis of proteins, and hence can cause burns in the eves which may lead to permanent eve damage			
Principle	Total acids present in a titration using pH meter.	alcoholic beverages are estir	nated using acid -base		
Apparatus / Instruments	 General Glassware and apparatus (Refer 2.0 at page no. 2). pH Meter. Magnetic stirrer. Beaker 250 mL capacity 				
Materials and Reagents	 Alcoholic beverages. Sodium Hydroxide. Buffer solutions of pH 	I 4.0, 7.0 and 9.2			
Preparation of reagents	1. Sodium hydroxide so L water.	olution (0.05N): Sodium hydro	oxide (2 g) dissolved in 1		
Method of analysis	 Calibrate and standardize the pH meter using the buffer solutions of pH 4.0, 7.0 and 9.2. Take approximately 100 mL of distilled water in a basker and put a magnetic 				
	2. Take approximately 10 bead and place the bea	0 mL of distilled water in a be ker on a magnetic stirrer.	eaker and put a magnetic		
	3. Carefully immerse the electrode of the pH meter into the water and titrate against standard NaOH solution to pH 8.2. Now add 50 mL of liquor sample to the pH adjusted water and titrate to pH 8.2. Note down the volume of NaOH required (The wine sample may be initially degassed by stirring and heating to 90 °C to remove carbon dioxide).				
Calculation with units of	Total acidity as tartaric acid(g per liter of wine or toddy)				
expression	Where	$= (V \times 0.003/5 \times 1000) \div V_{2}$	L		
	$V_1 = Volume of wine take$	en for estimation			
	V = Volume of std. NaOH	I used for titration, in mL			
	Note: 1 mL of 0.05N NaC	OH is equivalent to 0.00375 g of	of tartaric acid.		
Reference	1. IS Standard – IS 3752:2	2005, Alcoholic Drinks, Metho	ds of Test		
Approved by	2. IS Standard – IS 7585: Scientific Panel on Metho	ds of Sampling and Analysis	ys1s		

	Determination of Volatile Acids (as Acetic Acid)			
ISSAT FOOD SAFETY AND STANDARDS				
AUTHORITY OF INDIA Inspiring Trust, Assuring Safe & Nutritious Food				
Method No.	FSSAI 13.009:2021 Revision No. & Date 0.0			
Scope	Volatile acids present in alcoholic beverages are estimated using this method.			
	The method is applicable to all alcoholic beverages			
Caution	Sodium hydroxide: Sodium hydroxide is strongly irritating and corrosive. It can			
	cause severe burns and permanent damage to any tissue that it comes in contact			
	with. Sodium hydroxide can cause hydrolysis of proteins, and hence can cause			
	burns in the eyes which may lead to permanent eye damage.			
Principle	Alcoholic beverages are distilled and the volatile acids present, in the distillate			
	are estimated.			
Apparatus/Instruments	1. General Glassware and apparatus (Refer 2.0 at page no. 2).			
Materials and Reagents	1. Sodium Hydroxide.			
	2. Phenolphthalein indicator.			
Drenouotion of reasonts	3. Rectified spirit.			
Preparation of reagents	water			
	2 Phenolphthalein indicator solution - Dissolve 1.0 g of phenolphthalein in 100			
	mL rectified spirit.			
Method of Analysis	1. Take 50 mL distillate collected during the determination of ethyl alcohol for			
	volatile acidity determination (FSSAI 13.001:2021).			
	2. Titrate against standard NaOH using phenolphthalein indicator			
Calculation with units of	1. For liquors:			
expression	Volatile acidity as acetic acid(g per 100 liters of absolute alcohol)			
	$= (\mathbf{V} \times 0.003 \times 100 \times 1000 \times 2) \div \mathbf{V}_1$			
	Where, $V =$ volume of standard NaOH used for titration, in mL			
	v_1 = alcohol % by volume			
	Volatile acidity as acetic acid(g per liter of wine)			
	$= (V \times 0.003 \times 1000) \div V_1$			
	Where, $V_1 =$ Volume of wine taken for estimation			
	V = volume of standard NaOH used for titration, in mL			
	Note: 1 mL of 0.05N NaOH is equivalent to 0.003 g of acetic acid.			
Reference	1. IS Standard – IS 3752:2005, Alcoholic Drinks, Methods of Test			
	2. IS Standard – IS 7585:1995, Wines, Methods of Analysis			
Approved by	Scientific Panel on Methods of Sampling and Analysis			

	Determination of Total Esters				
FOOD SAFETY AND STANDARDS					
AUTHORITY OF INDIA Inspiring Trust, Assuring Safe & Nutritious Food					
Method No.	FSSAI 13.010:2021	Revision No. & Date	0.0		
Scone	Total esters present in the	alcoholic beverages are detern	nined The method is		
Scope	applicable to all alcoholic	beverages			
Caution	 Sulphuric acid: Conce cause serious burns v because it not only cau as a result of dehydrat skin, paper, metals, an direct contact with the this chemical may ca possibly death. Sodium hydroxide: So can cause severe burns contact with. Sodium h can cause burns in the 	entrated sulfuric acid is extra when not handled properly. T uses chemical burns, but also tion. This dangerous chemical nd even stone in some cases e eyes, it can cause permanen use internal burns, irreversit dium hydroxide is strongly in s and permanent damage to an hydroxide can cause hydrolysi eyes which may lead to perman	emely corrosive and can Chis chemical is unique secondary thermal burns is capable of corroding . If sulfuric acid makes at blindness. If ingested, ble organ damage, and ritating and corrosive. It by tissue that it comes in s of proteins, and hence ment eye damage.		
Principle	Esters present in the neutralised alcoholic beverages are hydrolysed and estimated.				
Apparatus / Instruments	1. General Glassware and apparatus (Refer 2.0 at page no. 2)				
Materials and Reagents	1. Alcoholic beverages				
	2. Sodium Hydroxide				
D ronovation of reagants	3. Sulphuric acid	tion (0.1N): Sodium hydroxid	la (1 g) dissolved in 1 I		
r reparation of reagents	water.		ie (4 g) dissolved in 1 L		
	2. Standard Sulphuric aci	d, 0.1N: Sulphuric acid (4.9 g)	dissolved in 1 L water.		
Method of Analysis	 To the neutralized dist 13.009:2021), add 10 n Cool and back titrate th 	tillate from the volatile acidit nL of std. NaOH and reflux on ne unspent alkali against standa	y determination (FSSAI a steam bath for 1 h. ard sulphuric acid.		
	3. Carry out a blank titra	ation simultaneously taking 5	0 mL of distilled water		
	instead of distillate in t	he same way.			
	4. The difference in titer	value in milliliters of standard	sulphuric acid gives the		
	equivalent ester.				
Calculation with units of	Esters expressed a	s ethyl acetate(g per 100 lite	rs of abs. alcohol)		
expression	= (V) Where $V = difference A$	\times 0.0088 \times 100 \times 1000 \times 2) of titer value of standard H	$\div V_1$		
	sample, in mL	or the value of standard Π_2	boguseu ioi bialik allu		
	$V_1 = $ alcohol % by volume.				
	Note: 1 mL of 0.1N NaOH is equivalent to 0.0088 g of Ethyl acetate.				
Reference	1. IS Standard – IS 3752:2	2005, Alcoholic Drinks, Metho	ds of Test		
Approved by	2. IS Standard – IS 7585:1 Scientific Panal on Matha	ds of Sampling and Applysic	y818		
Approved by	Scientific Faller on Metho	us of Sampling and Analysis			

~	Determination of Esters - Gas Chromatographic Method using Capillary			
ISSAT FOOD SAFETY AND STANDARDS	Column			
Inspiring Trust, Assuring Safe & Nutritious Food Ministry of Health and Family Welfare, Government of India				
Method No.	FSSAI 13.011:2021 Revision No. & Date 0.0			
Scope	This method is used to determine esters using Gas chromatography equipped			
	with capillary column. The method is applicable to all alcoholic beverages			
Caution	1. Methanol: Methanol is highly flammable and toxic. Direct ingestion of more			
	than 10 mL can cause permanent blindness by destruction of the optic nerve,			
	poisoning of the central nervous system, coma and possibly death. These			
	exposure			
	2. Isobutvraldehvde: Breathing Isobutvraldehvde can irritate the lungs causing			
	coughing and/or shortness of breath. Exposure to Isobutyraldehyde can			
	cause headache, nausea and vomiting. High levels can cause to feel dizzy,			
	lightheaded and to pass out. Isobutyraldehyde is a flammable liquid and a			
	fire hazard.			
	3. Methyl acetate: Methyl Acetate can affect you when breathed in and by			
	passing infough your skin. Contact can irritate and burn the eyes with possible permanent damage. Methyl Acetate can irritate the skin and cause			
	itching, redness, rash, drving and cracking. Methyl Acetate is a flammable			
	liquid and a fire hazard.			
	4. n-Propyl acetate: Causes eye, skin, and respiratory tract irritation. Breathing			
	vapors may cause drowsiness and dizziness.			
	5. t-Amyl alcohol: Ingestion Harmful if swallowed. Skin Harmful if absorbed			
	through skin. Causes skin irritation. Eyes Causes eye irritation.			
	6. n-Butyl acetate: Breathing vapors may cause drowsiness and dizziness.			
	skin dryness or cracking Target Organs: Central nervous system respiratory			
	system, eves, skin.			
	7. Ethyl propionate: Ethyl propionate can affect when breathed in and may be			
	absorbed through the skin. Contact can irritate and burn the skin and eyes.			
	Breathing Ethyl Propionate can irritate the nose and throat causing coughing			
	and wheezing. High exposure to Ethyl Propionate can cause drowsiness and			
	steepiness.			
	throat Exposure to high concentrations can cause headache drowsiness			
	dizziness, confusion, nausea and vomiting. Propyl alcohol may cause liver			
	damage. Propyl alcohol is a flammable liquid and a dangerous fire hazard.			
	9. Isoutanol: Inhalation of high concentrations of vapors may cause irritation of			
	the respiratory tract with sore throat, coughing, shortness of breath,			
	neadaches, nausea, dizziness, dullness, narcosis and unconsciousness.			
	cause headache drowsiness dizziness lightheadedness fatigue and may			
	cause vou to pass out. Prolonged or repeated contact can cause drving and			
	cracking of the skin. Isoamyl acetate is a flammable liquid and a fire hazard.			
	11. Phenyl acetate: Harmful if swallowed, Exposure: skin - redness; eyes-			
	redness, pain.			
	12. Caprylic acid: Caprylic acid can lower blood pressure. In theory, caprylic			
	acid might cause blood pressure to go too low if used by people prone to low			

	 blood pressure; Caprylic acid is broken down by the liver. There is some concern that people with liver disease might not be able to break down caprylic acid. This might cause blood levels of caprylic acid to increase. 13. n-Butanol: Flammable Liquid, Oral and dermal Toxicity, Acute Toxicity on Inhalation, Skin Corrosion/Irritation, Eye Damage Category, Acute Vertebrate Hazard. 14. Iso-amyl alcohol: Iso-amyl Alcohol can cause nausea, vomiting and diarrhea. Exposure can cause headache, dizziness, lightheadedness, and passing out. cracking of the skin. 15. Ethyl caprylate: Causes eye, skin, and respiratory tract irritation. Combustible liquid and vapor. Target Organs: Respiratory system, eyes, skin. Potential Health Effects. 16. Furfural: Toxic if swallowed; Harmful in contact with skin; Causes skin irritation; Causes serious eye irritation; Toxic if inhaled; May cause respiratory irritation; Respiratory tract irritation; Suspected of causing cancer. 17. Ethyl laurate: May irritate eyes, skin, and respiratory tract Alfa Aesar. 		
	 Phenethyl alcohol: Harmful if absorbed through the skin. Causes eye, skin, and respiratory tract irritation. May be harmful if swallowed. Isovaleric acid: Harmful if swallowed. Toxic in contact with skin. Causes burns. 		
	20. Ethyl caproate: Difficulty in breathing. Symptoms of overexposure may be headache, dizziness, tiredness, nausea and vomiting.21. Phenethyl acetate: Serious eye damage/eye irritation.		
	22. Ethyl lactate: Ethyl Lactate can affect you when breathed in and may be absorbed through the skin. Prolonged contact can irritate the skin and eyes. Breathing Ethyl Lactate may cause dizziness, lightheadedness, and passing out.		
	3. Acetic acid: Acetic acid can be a hazardous chemical if not used in a safe and appropriate manner. This liquid is highly corrosive to the skin and eyes and, because of this, must be handled with extreme care. Acetic acid can also be damaging to the internal organs if ingested or in the case of vapor inhalation		
	 24. Isobutyric acid: Isobutyric Acid can affect you when breathed in and may be absorbed through the skin. Contact can irritate and burn the skin and eyes. Breathing Isobutyric Acid can irritate the nose, throat and lungs causing coughing, wheezing and/or shortness of breath. 25. Due to the skin and the skin an		
	 25. Pelargonic acid: Causes skin irritation. Causes serious eye irritation. 26. Capric acid: Causes skin irritation. May be harmful if absorbed through the skin. Ingestion: May cause gastrointestinal irritation with nausea, vomiting and diarrhea. Inhalation: May cause respiratory tract irritation. 		
Principle	Sample peak areas in GC are compared with that of standards and esters are determined.		
Apparatus/ Instruments	 General Glassware and apparatus (Refer 2.0 at page no. 2). Gas chromatography - Gas chromatography equipped with flame ionization detector and split injection port and fixed with a capillary column of HP carbowax 20M or equivalent having the dimensions of 25 m length, 0.32 mm ID and 0.30 μm film thickness. Syringe – 10 μL; Hamilton Co. No. 701, or equivalent. 		

Materials and Reagents				
	S. No.	Reagents		
	1	Internal standard: 0.5% (v/v) n-Pentanol in 40% (v/v) Ethanol		
		(methanol-free)		
	2	Ethanol (Methanol-free)		
	3	Methanol		
	4	Acetaldehyde		
	5	Isobutyraldehyde		
	6	Methyl acetate		
	7	Ethyl acetate		
	8	Iso-valeraldehyde		
	9	n-propyl acetate		
	10	t-Amyl alcohol		
	11	n-Butyl acetate		
	12	Ethyl propionate		
	13	n-Proponol		
	14	Iso-butanol		
	15	Depryl acetate		
	10	Caprylic acid		
	18	n-Butanol		
	19	Iso-amyl alcohol		
	20	Ethyl caprylate		
	21	Furfural		
	22	Ethyl caprate		
	23	Ethyl laurate		
	24	Phenethyl alcohol		
	25	Ethyl palmitate		
	26	Isovaleric acid		
	27	Ethyl caproate		
	28	Phenethyl acetate		
	29	Ethyl lactate		
	30	Acetic acid		
	31	Isobutyric acid		
	32	Ethyl myristate		
	33	Pelargonic acid		
	34	Capric acid		
	35	Diacetyl		
Preparation of reagents	Preparatio	n of standard mixture		
	1. Transfer	er accurately a known quantity of about 5.0 g of reagents listed from (3)		
	to (35) into	different 100 mL volumetric flasks and dilute to 100 mL with 40%		
	(v/v) ethance	ol (methanol-free).		
	2. I ransier	ter 1.0 mL of each of the resulting solutions into a 100 mL volumetric d dilute to assume with 400 (set) with each (model a = 1.6		
	3 This solu	a diffue to volume with 40% (V/V) ethanol (methanol-free).		
	above	solution will give approximately 500 ppm of each of component listed		
	Preparatio	ion of working standard mixture		

	4. Transfer 5 mL of standard mixture into a 10 mL stoppered test tube. Add 1			
	mL of internal standard solution (1) and mix well.			
Sample Preparation	Transfer 5 mL of sample into a 10 mL stoppered test tube, add 1 mL of n-			
	pentanol internal standard solution and mix well.			
Method of Analysis	Gas chromatography and operating parameters.			
	1. The split ratio will be approximately 1:40 with nitrogen or helium as a carrier			
	gas at the flow rate of about 1.7 mL/min.			
	2. The detector and injector port temperatures may be maintained at about 250			
	⁰ C.			
	3. Keep the oven temperature at 45 °C for 4 min, raise to 100 °C at the rate of			
	10 °C/min and finally to 200 °C for 10 min at the rate of 15 °C/min.			
	Note:-Optimum operating conditions may vary with column and instrument used			
	and must be determined by using standard solutions. Adjust the parameters for			
	maximum peak sharpness and optimum separation. With high level standard, n-			
	propanol should give almost complete baseline separation from ethanol.			
	4. Inject 2 µL of working standard mixture solution into chromatograph and			
	record the chromatogram.			
	5. Adjust the operating parameters and attenuation to obtain measurable peaks			
	(at least 25% of full-scale deflection).			
	6. Determine the retention time of methanol and n-pentanol.			
	7. Inject 2 μ L sample solution into chromatograph and record the chromatogram			
	(adjust attenuation, if necessary).			
	Note: -Identify the individual components by injecting respective component			
	standard solutions into the gas chromatograph and record the retention times.			
Calculation with units of	Calculate the individual component in gram per 100 litres of absolute alcohol as			
expression	follows:			
	Individual component = $(R_2 \times C \times D \times 1000 \times 100 \times 100) \div (R_1 \times S)$			
	Where,			
	R_2 - Peak ratio of respective individual component (with respect to standard) to			
	n-pentanol for sample solution;			
	C- Concentration of respective individual component in standard solution, in			
	g/mL;			
	D-Dilution factor for sample solution;			
	R_1 - Peak ratio of individual component to n-pentanol for standard solution;			
	S- Ethanol content of liquor sample in $percent(v/v)$.			
Reference	1. IS 3752:2005			
	2. AOAC 968.09-1969, alcohols (higher) and ethyl acetate in distill			
Approved by	Scientific Panel on Methods of Sampling and Analysis			

	Determination of Esters - Gas Chromatographic Method using Packed			
FOOD SAFETY AND STANDARDS	Column			
AUTHORITY OF INDIA Inspiring Trust, Assuring Safe & Nutritious Food				
Method No	ESSAL13.01	2.2021	Revision No & Date	0.0
Soono	This method	$\frac{12.2021}{1.000}$	latermine actors using Cas	chromatography aquipped
Scope	with packed column. The method is applicable to all alcoholic beverages			
Caution		3 011.2021	include is applicable to an a	conone beverages.
Bringinla	Sec 155A11	$\frac{1}{2}$	Concerned with that of	f standards and astars are
1 Interpre	determined.		z are compared with that of	i standards and esters are
Apparatus / Instruments	1. General G	lassware and	apparatus (Refer 2.0 at page	no. 2).
	2.Gas chron	matograph -	- Gas chromatograph equipp	bed with flame ionization
	detector and	l packed inl	et and fixed with a glass	column packed with 5%
	Carbowax 2	0M on carbo _l	bak B, 80/120 mesh or equiv	alent packed columns like
	porapak- Q l	naving the dir	nensions of 2 m in length and	l 4 mm in ID.
	3. Syringe-	10 µL, Hamil	ton Co. No. 701, or equivaler	nt.
Materials and Reagents	S. No.		Reagents	
	1	Internal sta	indard: 0.5% (v/v) n-Pentanc	ol in 40% (v/v) Ethanol
		(methanol-	tree)	
	2	Ethanol (M	ethanol-free)	
	3	Methanol	1	
	4 Acetaldehyde			
	5 Ethyl acetate			
	b n-Propanol			
	/ ISO-DUIAIIOI			
	9 Iso-amyl alcohol			
	9	Iso-amyr ar		
	10 Euryr capryrae 11 Furfural			
	12 Ethyl caprate			
	12 Eury captaic 13 Ethyl laurate			
	14 Phenethyl alcohol			
	14 Flicitculyi alcolloi			
	1.5 Ethyl lootate			
	17	Acetic acid		
Prenaration of reagents	Propagation of standard mixture			
reparation of reagents	1 Transfer accurately known quantity of about 5.0 g of the reagents listed from			
	(3) to (17)	() in to differe	ent 100 mL volumetric flasks	and dilute to 100 mL with
	40 percent (v/) ethanol (methanol-free)			
	2. Transfer	1.0 mL of ea	ch of the resulting solutions	into a 100 mL volumetric
	flask and	dilute to volu	me with 40% (v/v) ethanol (1	methanol-free).
	3. This solu	tion will give	approximately 500 ppm of	each of component listed
	above.			
	Preparation	of working	standard mixture	
	Transfer 5 1	nL of standar	d mixture into a 10 mL stop	ppered test tube, add 1 mL
	of internal st	andard soluti	on (1) and mix well.	
Sample Preparation	Transfer 5 1	nL of sample	e into a 10 mL stoppered to	est tube, add 1 mL of n-
	pentanol internal standard solution and mix well.			

Method of Analysis	Gas chromatograph and operating parameters					
•	Nitrogen or helium may be used as carrier gas at suitable flow rate.					
	The detector and injector port temperatures may be maintained at about 250 $^{\circ}$ C.					
	Keep the oven temperature at 45 $^{\circ}$ C for 4min, raise to 100 $^{\circ}$ C at the rate of 10 $^{\circ}$ C					
	/min and finally to 200 $^{\circ}$ C for 10 min at the rate of 15 $^{\circ}$ C/min					
	Note: - Optimum operating conditions may vary with column and instrument					
	used and must be determined by using standard solutions. Adjust the parameters					
	for maximum peak sharpness and optimum separation. With high level standard.					
	<i>n</i> -propanol should give almost complete baseline separation from ethanol.					
	Inject 2 μ L of working standard mixture solution into chromatograph and record					
	the chromatogram.					
	Adjust the operating parameters and attenuation to obtain measurable peaks (at					
	least 25% of full-scale deflection).					
	Determine the retention time of methanol and n-pentanol.					
	Inject 2 µL sample solution into chromatograph and record the chromatogram					
	(adjust attenuation, if necessary).					
	Note: - Identify the individual components by injecting respective components					
	standard solutions to the gas chromatograph and record the retention times.					
Calculation with units of	Calculate the individual component in grams per 100 litres of absolute alcohol as					
expression	follows:					
	Individual component = $(R_2 \times C \times D \times 1000 \times 100 \times 100) \div (R_1 \times S)$					
	Where,					
	R ₂ - Peak ratio of respective individual component (with respect to standard) to					
	n-pentanol for sample solution;					
	C- Concentration of respective individual component in standard solution, in					
	g/mL;					
	D- Dilution factor for sample solution;					
	R_1 - Peak ratio of individual component to n-pentanol for standard solution; and					
	S- Ethanol content of liquor sample in $percent(v/v)$.					
Reference	1. IS 3752:2005					
	2.AOAC 968.09					
Approved by	Scientific Panel on Methods of Sampling and Analysis					

() ()	Determination of Higher Alcohols - Titrimetric Method					
FOOD SAFETY AND STANDARDS						
AUTHORITY OF INDIA Inspiring Trust, Assuring Safe & Nutritious Food						
Menstry of Health and Family Welfare, Government of India	ESSAL13.013.2021 Parisian No. & Data 0.0					
Scope	Titrimetric method for determination of higher alcohols present in alcoholic					
Scope	hereages.					
Caution	1. Sulphuric acid: Concentrated sulfuric acid is extremely corrosive and can					
	cause serious burns when not handled properly. This chemical is unique					
	because it not only causes chemical burns, but also secondary thermal burns					
	as a result of dehydration. This dangerous chemical is capable of corroding					
	skin, paper, metals, and even stone in some cases. If sulfuric acid makes					
	direct contact with the eyes, it can cause permanent blindness. If ingested,					
	unis chemical may cause internal burns, irreversible organ damage, and					
	2 Potassium dichromate: Corrosive Causes severe hurns to every area of					
	contact. Harmful if swallowed or inhaled. Affects the respiratory system,					
	liver, kidneys, eyes, skin and blood.					
	3. Sodium hydroxide: Sodium hydroxide is strongly irritating and corrosive. It					
	can cause severe burns and permanent damage to any tissue that it comes in					
	contact with. Sodium hydroxide can cause hydrolysis of proteins, and hence					
Principle	Higher alcohols separated by carbon tetrachloride after saturation with sodium					
Timeipie	chloride. Higher alcohols fraction is oxidized using oxidation reagent and					
	formed acid is titrated against alkali and estimated.					
Apparatus / Instruments	1. General Glassware and apparatus (Refer 2.0 at page no. 2).					
	2. Separating funnel, 250 mL.					
	3. Volumetric flask, 1 L capacity.					
	4. Distillation assembly having Kjeldhal flask, 800 mL capacity; With splash					
	neau, Liedig condenser, Receiver of capacity 250 mL.					
	(Figure is adopted from FSSAI Manual of Methods of Analysis of Foods:					
Motorials and Descents	Alcoholic beverages, 2019, Page 24)					
Iviaterials and Reagents	1. Sulphuric acid GK grade.					
	2. Forassium dicinomate. 3. Standard NaOH 0 1N					
	4. Carbon tetrachloride GR grade, distilled					
	5. Sodium chloride GR grade					

	6. Sodium sulphate, AR grade					
	7. Phenolphthalein indicator					
Preparation of reagents	1. Oxidizing mixture - Dissolve Potassium dichromate, 100 g in 500 mL					
	distilled water and add sulphuric acid, 100 mL and make up to 1 L volume					
	with distilled water.					
	2. Sodium hydroxide solution (0.1N): Sodium hydroxide (4 g) dissolved in 1 L					
	water.					
	3. Phenolphthalein indicator solution - Dissolve 1.0 g of phenolphthalein in 100					
	mL rectified spirit.					
Method of Analysis	1. Transfer the solution, obtained from the determination of esters (FSSAI					
	13.010:2021) into a separatory funnel and add 50 mL of distilled water.					
	2. Saturate it with sodium chloride and extract four times with successive					
	portions of 40, 30, 20 and 10 mL of carbon tetrachloride.					
	3. Pool all the extracts and wash 3 times with saturated sodium chloride solution					
	and twice with saturated sodium sulphate solution.					
	4. Filter the extract and add 50 mL of oxidizing mixture. Reflux for 2 h, cool					
	and wash the reflux with 50 mL of distilled water.					
	5. Transfer it to the distillation assembly using 50 mL of water. Distil about 100					
	mL and see that no charring takes place.					
	6. Titrate the distillate against standard NaOH using phenolphthalein indicator.					
	7. Run a blank in the same way taking 50 mL of distilled water in place of the					
	distillate of the liquor.					
Calculation with units of	Higher alcohol expressed Amyl alcohol, in grams. Per 100 liters of abs. alcohol					
expression	$= (V \times 0.0088 \times 100 \times 1000 \times 2) \div (V_1 \times V_2)$					
	Where, V = difference of titer value of std. alkali used for blank and sample, in					
	mL					
	V_1 = Volume of sample taken for estimation					
	$V_2 =$ alcohol % by volume					
	Note: 1 mL of 0.1N NaOH is equivalent to 0.0088 g of Amyl alcohol					
Reference	1. IS Standard – IS 3752:2005, Alcoholic Drinks, Methods of Test					
	2. IS Standard – IS 7585:1995, Wines, Methods of Analysis					
Approved by	Scientific Panel on Methods of Sampling and Analysis					

Determination of Higher Alcohols - Spectrophotometric Method

Method No.	FSSAI 13.014:2021 Revision No. & Date 0.0				
Scope	Spectrophotometric method for determination of higher alcohols present in				
	alcoholic beverages.				
Caution	 alcoholic beverages. p-Dimethylaminobenzaldehyde: Inhalation may be harmful if inhaled. May cause respiratory tract irritation. Ingestion may be harmful if swallowed. Skin May be harmful if absorbed through skin. Sulphuric acid: Concentrated sulfuric acid is extremely corrosive and can cause serious burns when not handled properly. This chemical is unique because it not only causes chemical burns, but also secondary thermal burns as a result of dehydration. This dangerous chemical is capable of corroding skin, paper, metals, and even stone in some cases. If sulfuric acid makes direct contact with the eyes, it can cause permanent blindness. If ingested, this chemical may cause internal burns, irreversible organ damage, and possibly death. Isobutylalcohol: Breathing Isobutyl Alcohol can irritate the nose, mouth and throat causing coughing and wheezing. Exposure to Isobutyl Alcohol can cause headache, dizziness, drowsiness, confusion and loss of coordination. Isobutyl Alcohol may affect the liver. Isobutyl Alcohol is a flammable liquid and a dangerous fire hazard. Isoamyl alcohol: Isoamyl Alcohol can cause nausea, vomiting and diarrhea. Exposure can cause headache, dizziness, lightheadedness, and passing out. arreling of the skin 				
Principle	 Cracking of the skin. Higher alcohols react with p-dimethylaminobenzaldehyde in sulphuric acid and forms coloured compounds. Quantity of alcohols is determined by measuring the 				
	absorbance at relevant wavelength				
Apparatus / Instruments	1. General Glassware and apparatus (Refer 2.0 at page no. 2).				
	2. Spectrophotometer, double beam.				
	3. Steam bath.				
	4. Test tube, stoppered, 15 mL capacity				
Materials and Reagents	1. Alcoholic beverages.				
	2. p-dimethylaminobenzaldehyde.				
	3. Sulphuric acid.				
	4. Iso-butyl alcohol, GR grade.				
	5. ISO-allyl alcohol, GK grade.				
Preparation of reagents	1 n-dimethylaminohenzaldehyde solution – Dissolve 1 σ in a mixture of 5 mJ				
reparation of reagents	sulphuric acid and 90 mL distilled water and transfer to a 100 mL volumetric				
	flask and make up to the mark.				
	Preparation of Synthetic standard of higher alcohols				
	2. Weigh 2 g isobutyl alcohol and 8 g iso-amyl alcohol into 1 L volumetric flask				
	and dilute to mark with water.				
	3. Pipette two 10 mL portions into 100 mL volumetric flasks and dilute to mark,				
	one with water and other with ethyl alcohol.				
	4. Prepare working standards for products in the range of 1.0 to 6.0 g synthet				

	higher alcohol per 100 L by diluting 1.0 to 6.0 mL aliquots of alcohol					
	standards solution to 100 mL with alcohol solution.					
	(Solution containing 6 mL synthetic standard would give an absorbance of					
	0.83±0.03 at 530 nm).					
Sample Preparation	1. Transfer 200 mL of alcoholic drink into a 500 mL distillation flask containing					
	about 25 mL of distilled water and a few pieces of pumice stone.					
	2. Distil the contents in about 35 min and collect the distillate in a 200 mL					
	volumetric flask till the volume almost reaches the mark.					
	3. Bring the distillate to room temperature and make up to volume with distilled water and mix thoroughly.					
	4. For samples containing 6 g fuel oil per 100 L, dilute the distilled sample with distilled water to concentrations of 2.0 to 5.0 g/100L.					
Method of analysis	1. Pipette 2 mL of aliquot of sample (or diluted sample), 2 mL of distilled water					
	(for reagent blank) and 2 mL of synthetic standard to each of the test tubes					
	(15mm x 150mm-with stoppers).					
	2. Stopper and place it in ice-bath in a rack.					
	3. Pipette 1 mL p-dimethylaminobenzaldehyde solution into each tube: shake					
	and replace in ice-bath for 3 min.					
	4. With tubes retained in ice- bath, add 10 mL sulphuric acid and shake the					
	tubes and replace in ice-bath for 3 min.					
	5. Transfer the rack containing tubes into steam bath for 3 to 5 min. and bring it					
	to room temperature.					
	6. Read the % T or Absorbance (OD) of developed colour of samples and series					
	of standards in spectrophotometer at 530/535 nm against reagent blank as					
	reference.					
	7. Plot higher alcohol g/100 L Concentrations of Standards Vs. %T or OD.					
Calculation with units of	From the OD of the sample find out the concentration of Higher alcohol g/100L					
expression	using the standard curve.					
Reference	1. IS Standard – IS 3752:2005, Alcoholic Drinks, Methods of Test					
	2. IS Standard – IS 7585:1995, Wines, Methods of Analysis					
Approved by	Scientific Panel on Methods of Sampling and Analysis					

FOOD SAFETY AND STANDARDS LUTHORITY OF INDIA Inspiring Trust, Assuring Safe & Nutritious Food Menagy of Health and Family Wildlam, Government of India	Determination of Higher Alcohols - Gas Chromatographic Method using Capillary Column				
Method No.	FSSAI 13.015:2021	Revision No. & Date	0.0		
Scope	Gas chromatographic method using capillary column for determination of higher alcohols present in alcoholic beverages.				
Principle	Quantity of alcohols determined using similar procedure as per the esters (See FSSAI 13.011:2021) using standard reference materials of alcohols.				
Reference	1. IS 3752:2005	-			
	2. AOAC 968.09				
Approved by	Scientific Panel on Methods of Sampling and Analysis				

Determination of Higher Alcohols - Gas Chromatographic Method using Packed Column

Ministry of Health and Family Welfare, Government of India			
Method No.	FSSAI 13.016:2021	Revision No. & Date	0.0
Scope	Gas Chromatographic Met Quantity of alcohols deter standard reference materia	thod using packed column(See rmined using similar procedur ils of alcohols.	FSSAI 13.012:2021) e as per the esters using
Reference	1. IS 3752:2005 2. AOAC 968.09		
Approved by	Scientific Panel on Metho	ds of Sampling and Analysis	

Determination of Higher Alcohols - Gas Chromatographic Method using Calibration Curves of Standards

Ministry of Health and Particy Weitare, Government of India			
Method No.	FSSAI 13.017:2021 Revision No. & Date 0.0		
Scope	Gas Chromatographic method for determination of higher alcohols present in		
_	alcoholic beverages using calibration curves of standards.		
Caution	 Isobutyl alcohol: Breathing Isobutyl Alcohol can irritate the nose, mouth and throat causing coughing and wheezing. Exposure to Isobutyl Alcohol can cause headache, dizziness, drowsiness, confusion and loss of coordination. Isobutyl Alcohol may affect the liver. Isobutyl Alcohol is a flammable liquid and a dangerous fire hazard. Isoamyl alcohol: Isoamyl alcohol can cause nausea, vomiting and diarrhea. 		
	Exposure can cause headache, dizziness, lightheadedness, and passing out. Cracking of the skin.		
	 Propanol: Exposure to propyl alcohol can irritate the eyes, nose, and throat. Exposure to high concentrations can cause headache, drowsiness, dizziness, confusion, nausea and vomiting. Propyl alcohol may cause liver damage. Propyl alcohol is a flammable liquid and a dangerous fire hazard. 3-Pentanol: Flammable liquid and vapour. Harmful if swallowed. Ethyl acetate: Ethyl acetate is highly flammable, as well as toxic when ingestion or inhaled, and this chemical can be seriously damaging to internal 		
	organs in the case of repeated or prolonged exposure. Ethyl acetate can also		
Drain ain la	Cause initiation when it comes into contact with the eyes of skin.		
Principle	Calibration curves are prepared using GC responses of known concentration of		
American / Tracture outo	authentic standards. These are used to determine higher aconois.		
Apparatus / Instruments	 Coherar Glassware and apparatus (Refer 2.6 at page 10. 2). Gas chromatograph- Equipped with flame ionization detector. Column- 2% glycerol and 2% 1, 2, 6-hexanetriol. Pack 3m (10ft) × 3mm (1/8in.) od tube. Condition overnight in 80 °C column oven with the flow rate of 10-25 mL/min and detector end of column disconnected. 		
Materials and Reagents	1. Alcoholic beverages		
	 Absolute alcohol (ethanol); (Use absolute alcohol throughout when alcohol is specified) n-Propyl alcohol Isobutyl alcohol Amyl alcohol 3-Pentanol Ethyl acetate 		
Preparation of reagents	 Amyl alcohol - Mixture of active-amyl and isoamyl alcohols, ca 22 and 78%, respectively, concentration composition of reagent. Measure areas of 2 peaks by triangulation (height × width at half height), and obtain concentration of each by dividing area of each peak by sum of both peak areas. 3-Pentanol internal standard solution- 40.76 mg/mL. Prepare solution containing 10 mL reagent in 200 mL Alcohol-H₂O (1+1) n-Propyl alcohol, Isobutyl alcohol, and Amyl alcohol standard solutions-Prepare 3 or 4 standard solutions containing varying amounts alcohols as follows: Into tared 100 mL volumetric flasks containing alcohol- H₂O (1+), pipet fusel alcohols and weigh after addition of each component. Proportions of fusel alcohols in each standard solution should vary so that desired 		

	 concentration range of each is represented in random manner in series of standard solutions. Suggested amounts: 0.25-1.5 mL n-propanol, 1.0-2.5 mL isobutyl alcohol, and 2.0-5.0 mL amyl alcohol. Dilute each volume with alcohol- H₂O (1+1). A n-Propyl alcohol isobutyl alcohol and amyl alcohol working standard 	
	solution - Dilute 10 mL each standard solution and 2.0 mL 3-pentanol internal standard solution to 200 mL with alcohol- $H_2O(1+1)$ (1:20 dilution).	
	5. Ethyl acetate standard solutions- Prepare 3 or 4 standard solutions containing 0-0.5 g/L (0-50 g/100L) in water or alcohol- H_2O (1+1). Use for preparing direct standard curve by plotting peak height (mm) against concentration in	
	g/100 L.	
Method of Analysis	Approximate parameters	
	1. Column, injector and detector temperatures (^o C)—80, 100, and 125, respectively; gas flows (mL/min) - He carrier and H 25, air 250-400; attenuation 64×.	
	2. Optimum operating conditions vary with column and instrument and must be determined by using standard solutions. Adjust parameters for maximum peak sharpness and optimum separation. Analysis is complete in Ca 11 min.	
	Determination	
	3. Pipet 10 mL test portion into convenient vessel (e.g, 1oz French square glass	
	bottle with screw cap), add, by pipet (0.2 mL pipet graduated in 0.01 mL), 0.1	
	mL 3-pentanol internal standard solution, and mix.	
	4. Inject 2 μ L test portion and working standard solutions.	
	5. Measure peak height of each component in working standard solutions and calculate peak height ratio of each to internal standard.	
	6. Calculate concentration ratio of each by dividing weight of component by that of internal standard. (Proportion of active-amyl and isoamyl alcohols in mixture must be taken into consideration in calculations of actual weights of each isomer in working standard solutions.)	
	7 Plot concentration ratios (horizontal axis) against peak height ratios (vertical	
	axis) for each higher alcohol in all working standards to obtain family of curves	
	8 For ethyl acetate, plot neak height directly against concentration	
	9. Similarly measure neak height of each component on test portion	
	chromatogram and calculate near height ratios	
	10 Read concentration ratios of all alcohols, using proper standard curve	
	Multiply concentration ratio of each fuel clockel in test portion by 40.76 to	
Calculation with units of	with provide the second and the second seco	
expression	New standard curves need be prepared only when new instruments, parameters	
	or standards are used	
Reference	1 IS 3752-2005	
Multille	2 AOAC 968 09	
Approved by	Scientific Panel on Methods of Sampling and Analysis	
Approved by	belentine i anei on wethous of bampning and r marysis	

Determination of Aldehydes - Titrimetric Method

Ministry of Health and Family Welfare, Government of India			
Method No.	FSSAI 13.018:2021 Revision No. & Date 0.0		
Scope	Titrimetric method for determination of aldehydes present in alcoholic		
	beverages.		
Caution	1. Sodium bisulphate: Harmful if swallowed. Contact with acids liberates toxic		
	gas.		
	2. Sodium thiosulphate: Sodium thiosulphate is moderately toxic when ingested.		
	Remove contaminated clothing and wash the affected area on the skin with		
	soap or mild detergent and large amounts of water until all evidence of the		
	chemical has been removed (approximately 15 min). Wash contaminated		
	clothing before reuse.		
Principle	Aldehydes react with sodium bisulphite and forms adducts. These adducts react		
	with iodine. Excess iodine is titrated and determined. Consumed iodine is		
	correlated with aldehyde content and determined		
Apparatus / Instruments	1. General Glassware and apparatus (Refer 2.0 at page no. 2).		
	2. Iodine flask, 250 mL capacity.		
	3. Burette, 25/50 mL capacity.		
Materials and Reagents	1. Sodium bisulphite solution.		
	2. Iodine standard solution.		
	3. Sodium thiosulphate standard.		
	4. Starch indicator.		
Preparation of reagents	1. Sodium bisulphite solution (0.05N) – Sodium bisulphite (2.6 g) dissolved in		
	1000 mL water.		
	2. Iodine standard solution -0.05 N.		
	3. Sodium thiosulphate standard (0.05N) – Sodium thiosulphate (12.4 g)		
	dissolved in 1000 mL water.		
	4. Starch indicator (1%) – starch (1 g) is dissolved in 100 mL water.		
Method of Analysis	1. Take 50 mL of distillate of liquor (FSSAI 13.001:2021) in a 250 mL lodine		
	tlask and add 10 mL of bisulphite solution. Keep the flask in a dark place for		
	30 min. with occasional shaking.		
	2. Add 25 mL of standard iodine solution and back titrate excess iodine against		
	standard thiosulphate solution using starch indicator to light green end point.		
	3. Run a blank taking 50 mL of distilled water in the same way.		
	4. The difference in titer value in milliliters, of sodium thiosulphate solution		
	gives the equivalent aldehyde content.		
Calculation with units of	Aldehydes expressed acetaldehyde (g per 100 liters of absolute alcohol)		
expression	$= (\mathbf{V} \times 0.0011 \times 100 \times 1000 \times 2) \div \mathbf{V}_1$		
	Where, V_1 = alcohol % by volume		
	V = difference in titer of blank and sample, in mL of		
	sodium this solution		
	Note: I mL. of 0.05N sodium thiosulphate is equivalent to 0.0011 g of		
Keterence	1. IS Standard – IS $3/52:2005$, Alcoholic Drinks, Methods of Test		
	2. IS Standard – IS 7585:1995, Wines, Methods of Analysis		
Approved by	Scientific Panel on Methods of Sampling and Analysis		

FOOD SAFETY AND STANDARDS AUTHORITY OF INDIA Inspiring Trust, Assuring Safe & Nutritios Food Mensity of Health and Family Welfan, Government of India	Determination of Aldehydes – Gas Chromatographic Method using Capillary Column		
Method No.	FSSAI 13.019:2021	Revision No. & Date	0.0
Scope	Gas chromatographic met	hod using capillary column (Se	e FSSAI 13.011:2021)
	Quantity of aldehydes det	ermined using similar procedu	re as per the esters using
	standard reference materia	als of aldehydes.	
Reference	1. IS 3752:2005		
	2. AOAC 968.09		
Approved by	Scientific Panel on Metho	ds of Sampling and Analysis	

FOOD SAFETY AND STANDARDS AUTHORITY OF INDIA Inspiring Trust, Assuring Safe & Nutritious Food Mentry of Hustin and Family Widea. Covernment of Insa	Determination of Aldel	hydes - Gas Chromatographic Column	e Method using Packed
Method No.	FSSAI 13.020:2021	Revision No. & Date	0.0
Scope	Gas Chromatographic Method using packed column (See FSSAI 13.012:2021)		
	Quantity of aldehydes determined using similar procedure as per the esters using		
	standard reference materi	als of alcohols.	
Reference	1. IS 3752:2005		
	2. AOAC 968.09		
Approved by	Scientific Panel on Metho	ods of Sampling and Analysis	

Method No.	FSSAI 13.021:2021 Revision No. & Date 0.0		
Scope	Colorimetric Method for determination of furfural present in alcoholic		
	beverages.		
Caution	 Hydrochloric acid: Hydrochloric acid is a hazardous liquid which must be used with care. The acid itself is corrosive, and concentrated forms release acidic mists that are also dangerous. If the acid or mist come into contact with the skin, eyes, or internal organs, the damage can be irreversible or even fatal in severe cases. Aniline: Aniline vapor is heavier than air and may accumulate in low-lying areas. The vapor is combustible. Aniline has a characteristic aromatic or fishy odor which provides adequate warning of acute exposure. Aniline is rapidly absorbed after inhalation and ingestion. Furfural: Toxic if swallowed; Harmful in contact with skin; Causes skin 		
	respiratory irritation; Respiratory tract irritation; Suspected of causing cancer. 4. m-Phenylenediamine hydrochloride: Causes serious eye irritation		
Principle	Furfural reacts with aniline in presence of hydrochloric acid and develops colour. Developed colours of alcohols with known quantity of furfural and unknown quantity of furfural are compared using Nessler comparator.		
Apparatus / Instruments	 General Glassware and apparatus (Refer 2.0 at page no. 2). Nessler tubes with flat bottom tubes of thin high quality glass, 25 mm in diameter and 150 mm in length and graduated at 50mL. 		
Materials and Reagents	 Alcoholic beverages. Aniline, (distilled and colourless). Hydrochloric acid, sp. gr. 1.125. Furfural. m-Phenylenediamine hydrochloride 		
Preparation of reagents	 Furfural free alcohol 1. Let alcohol containing 5 g of m-phenylenediamine hydrochloride per litre, stand at least for 24 h with frequent shaking (previous treatment with potassium hydroxide is not necessary). Reflux for at least 8 h, longer if necessary. 2. Let stand overnight and distill, rejecting the first 100 mL and the last 200 mL of the distillate. If this gives coloration with aniline hydrochloride, repeat the treatment. Standard furfural solution 3. Dissolve 1 g of redistilled, colourless furfural in 100 mL of the furfural free alcohol. 4. Prepare standard furfural solution by diluting 1 mL of this solution to 100 mL with 50% furfural free alcohol. 5. One mL of this diluted solution contains 0.1 mg of furfural (strong furfural solution shall retain its strength but the diluted standard solution should be prepared afresh every time). 		
Method of Analysis	1. Take 5 mL of the distillate obtained for ethanol determination, (FSSAI 13.001:2021), add 1 mL of the colourless aniline and 0.5 mL of the hydrochloric acid, and keep for 15 min. Red colour indicates the presence of		

	furfural. Proceed for quantitative estimation if colour develops.		
	2. Dilute a measured portion of the distillate with 50% furfural free alcohol to		
	50 mL.		
	3. First add 2 mL of the colourless aniline and then 0.5 mL of hydrochloric acid.		
	4. Mix and keep at 15 °C for 15 min.		
	5. Compare the colour developed with standard furfural solution by using a		
	Nessler comparator.		
Calculation with units of	Furfural (g per 100 liters of absolute alcohol)		
expression	$= (W \times 1000 \times 100 \times 100) \div (V_1 \times V_2)$		
	Where, $W = is$ the weight in grams of the furfural present in volume		
	used for matching the experimental solution;		
	V_1 = volume of experimental solution used for estimation; and		
	$V_2 = alcohol$, % by volume		
Reference	1. IS Standard – IS 3752:2005, Alcoholic Drinks, Methods of Test		
	2. IS Standard – IS 7585:1995, Wines, Methods of Analysis		
Approved by	Scientific Panel on Methods of Sampling and Analysis		

Determination of Furfural - Gas Chromatographic Method

Ministry of Health and Family Wettaw, Government of India			
Method No.	FSSAI 13.022:2021	Revision No. & Date	0.0
Scope	Determination of Furfu	ral by Gas Chromatograph	y as described under
	"Determination of Esters"	(See FSSAI 13.011:2021)	
Reference	1. IS 3752:2005		
	2. AOAC 968.09		
Approved by	Scientific Panel on Metho	ds of Sampling and Analysis	

Determination of Copper / Iron - Atomic Absorption Spectrophotometric (AAS) Method

Ministry of Health and Family Welfare, Government of India			
Method No.	FSSAI 13.023:2021 Revision No. & Date 0.0		
Scope	Atomic absorption Spectrophotometric (AAS) method for determination of		
	Copper / Iron present in alcoholic beverages.		
Caution	1. Acetylene: Acetylene combines with air or oxygen to form an explosive		
	mixture that can be ignited by a spark or the like, and can cause a serious		
	Explosion.		
	2. Nitric acid: May be fatal if inhaled. Causes severe eye and skin burns. Causes		
	severe respiratory and digestive tract burns. Strong oxidizer. Contact with		
	other material may cause a fire. Acute pulmonary edema or chronic		
	obstructive lung disease may occur from inhalation of the vapors of nitric		
	acid. Corrosive to metal. Target Organs: Lungs, eyes, skin, mucous		
	membranes.		
Principle	Liquor (clear) samples / digested samples are aspirated into AAS flame and		
	absorbance are measured for Copper / Iron and compared with absorbance of		
	SRMs.		
Apparatus / Instruments	1. General Glassware and apparatus (Refer 2.0 at page no. 2).		
	2. Atomic absorption Spectrophotometer (AAS) – Double beam.		
	3. Hollow Cathode Lamp –Copper.		
	4. Microwave Digester with Quartz tubes for digestion.		
	5. Muffle furnace.		
	6. Fume Hood.		
	7. Steam bath.		
	8. Silica crucible.		
Materials and Reagents	1. Alcoholic beverages.		
	2. Acetylene Ultra-pure grade.		
	4. Water $=$ triple distilled or Milli-O /18O		
	5 Copper SRM and Iron SRM (100 µg/mL) traceable to NIST		
	6 Alcohol- distilled		
Preparation of reagents	Preparation of Cu / Fe working standard solutions:		
reparation of reagents	1 Take suitable aliquots from Copper / Iron SRM to prepare 0.25, 0.50 and 1.00		
	μ_{σ} /mL Cu/Fe solutions and make up to known volume with 1N HNO ₂		
Method of Analysis	1 Follow operating instructions of manufacturer for the selection of optimum		
Wiellieu of Finalysis	gas flow, wavelength settings and beam alignment.		
	2. In case of clear samples direct injection of the liquor sample filtered		
	through 0.45 µm to AAS may be done to determine the quantity of copper		
	present in the sample.		
	3. In case of samples having high residues, it is not advisable to inject 0.45		
	µm Millipore-filtered sample, since clogging of the AAS burner head is		
	encountered. Hence wet ashing is preferred.		
	Preparation of Ash solution:		
	4. Wet Ashing - Take 50 to 100 mL of wine sample in a glass bowl and		
	evaporate to dryness.		
	5. Add 5 mL of ultra-pure nitric acid and transfer to the quartz tube of		
	microwave digester using little distilled water.		
	6. Pressure Digest the solution in microwave digestion apparatus for 30 min.		

38 | MoM - Alcoholic Beverages

	7. Cool and make up to 25 mL volume.	
	8. Blank Solution - Prepare a blank by taking 5 mL of ultrapure nitric acid and	
	make up to 25 mL volume.	
	Determination	
	9. Aspirate the blank into the AAS flame and set the instrument for zero	
	absorbance.	
	10. Aspirate the Cu/Fe Std. solutions sequentially for absorbance data	
	acquisition.	
	11. Now aspirate a) the liquor sample directly or b) nitric acid digested wine	
	sample solution into AAS flame to record the absorbance and in turn note	
	down the displayed concentration of Cu/Fe in μ g.	
	12. Calculate the concentration in the test sample involving the dilutions made.	
Calculation with units of	Copper / Iron content in wine (in μ g/mL or mg/L)	
expression	[Reading (in μ g)displayed × Dilution]	
	Volume of sample	
	Note: For directly aspirated liquor sample, dilution part will not appear in the	
	calculation	
Reference	1. A.O.A.C 17thedn, 2000 Official Method 999.11 Determination of Lead,	
	Cadmium, Copper, Iron and Zinc in Foods Atomic Absorption	
	Spectrophotometry after dry ashing.	
	2. For Detailed Metal Estimation Procedure - Refer Manual of Methods for	
	Analysis of Metals, FSSAI.	
Approved by	Scientific Panel on Methods of Sampling and Analysis	

Method No.	FSSAI 13.024:2021 Revision No. & Date 0.0		
Scope	Two methods, namely, diethyldithiocarbamate method and potassium		
	ferrocyanide method are employed.		
	The potassium ferrocyanide method is easier to perform and sufficiently		
	sensitive and accurate for routine type of analysis. The diethyldithiocarbamate		
	method is more sensitive and shall serve as a referee method in case of dispute or		
	where zinc is present.		
Caution	1. Sulphuric acid: Concentrated sulfuric acid is extremely corrosive and can		
	cause serious burns when not handled properly. This chemical is unique		
	because it not only causes chemical burns, but also secondary thermal burns		
	as a result of dehydration. This dangerous chemical is capable of corroding		
	skin, paper, metals, and even stone in some cases. If sulfuric acid makes		
	direct contact with the eyes, it can cause permanent blindness. If ingested,		
	this chemical may cause internal burns, irreversible organ damage, and		
	possibly death.		
	2. Hydrochloric acid: It is a hazardous liquid which must be used with care.		
	The acid itself is corrosive, and concentrated forms release acidic mists that		
	are also dangerous. If the acid or mist come into contact with the skin, eyes,		
	or internal organs, the damage can be irreversible or even fatal in severe		
	cases.		
	3. Ammonia solution: Contact with concentrated ammonia solutions may cause		
	corrosive injury including skin burns, permanent eye damage or blindness.		
	The full extent of eye injury may not be apparent for up to a week after the		
	exposure. Contact with liquefied ammonia can also cause frostbite injury.		
	4. Nitric acid: May be fatal if inhaled. Causes severe eye and skin burns. Causes		
	severe respiratory and digestive tract burns. Strong oxidizer. Contact with		
	other material may cause a fire. Acute pulmonary edema or chronic		
	obstructive lung disease may occur from inhalation of the vapors of nitric		
	acid. Corrosive to metal. Target Organs: Lungs, eyes, skin, mucous		
	membranes.		
	5. Citric acid: Ingestion May irritate and cause stomach pain, vomiting and		
	diarrhoea. Skin contact Skin irritation is not anticipated when used normally.		
	Eye contact Causes serious eye irritation. Particles in the eyes may cause		
	irritation and smarting.		
	6. Copper sulphate: Copper sulfate can cause severe eye irritation. Eating large		
	amounts of copper sulfate can lead to nausea, vomiting, and damage to body		
	tissues, blood cells, the liver, and kidneys.		
	7. Sodium diethyldithiocarbamate: Harmful if swallowed or inhaled. Cause		
	irritation to skin, eyes, and respiratory tract.		
	8. Carbon tetrachloride: Carbon tetrachloride can cause nausea, vomiting,		
	diarrhea and abdominal pain. Carbon tetrachloride can damage the liver and		
	kidneys.		
	9. Acetic acid: Acetic acid can be a hazardous chemical if not used in a safe and		
	appropriate manner. This liquid is highly corrosive to the skin and eves and.		
	because of this, must be handled with extreme care. Acetic acid can also be		
	damaging to the internal organs if ingested or in the case of vapor inhalation		
	authorized of in the case of vapor hindration.		

Principle	1. In the presence of copper, an aqueous solution of Sodium (or Zinc)
•	diethyldithiocarbamate gives a golden brown colour in acid or ammoniacal or
	neutral solution.
	2. The diethyldithiocarbamate method has advantages over the ferrocyanide
	method, which is in vogue in some laboratories since it is more sensitive and
	is free from interference by iron and zinc
	3. This method is suitable when the copper content ranges from 0.01 to 0.15 mg
	of copper in the quantity of the material taken.
	4. With larger quantities of copper, the mixture of the test solution and reagent
	rapidly becomes cloudy and any observance of this in the prescribed test is
	sufficient for condemning the sample as containing excessive quantities of
	copper.
	5. If a quantitative determination is required, the test should be repeated by
	using proportionately smaller quantities of sample for test.
Apparatus / Instruments	1. General Glassware and apparatus (Refer 2.0 at page no. 2).
	2. Nessler tubes - Flat bottom tubes of thin, colourless glass, about 25 mm in
	diameter and about 150 mm in length and graduated at 50 mL. The depth
	measured internally from graduation mark to the bottom shall not vary by
	more than 2 mm in the tubes used for the test.
Materials and Reagents	1. Alcoholic beverages.
	2. Concentrated Sulphuric acid.
	3. Concentrated nitric acid.
	4. Concentrated hydrochloric acid.
	5. Citric acid, AR grade.
	6. Ammonium Hydroxide.
	7. Copper sulphate ($CuSo_4.5H_2O$).
	8. Sodium diethyldithiocarbamate.
	9. Carbon tetrachloride, AR grade.
	10. Acetic acid.
Preparation of reagents	1. Dilute sulphuric acid, approximately 10% (v/v).
	2. Aqua regia, a mixture of one volume of concentrated nitric acid, and three
	volumes of concentrated hydrochloric acid.
	3. Standard copper solution – Dissolve 1.119 g of copper sulphate
	$(CuSo_4.SH_2O)$ in water and dilute to one litre. Dilute 10 mL of this solution to
	100 mL. One millilitre of the diluted solution contains 0.028545 mg of
	4. Sodium distributed solution shall always be prepared immediately before use.
	4. Solium diethyldithiocarbamate in water. Sometimes diethyldithiocarbamate available
	may not be completely caluble in water, in which case the insoluble meterial
	may he removed by filtration through an achless filter paper. The reagant is
	here best prepared just for use, but may stand for one or two weeks in amber
	coloured bottle without appreciable deterioration
	5 Acetic acid approximately 5% by weight
Sample Preparation	1 Transfer 20 mL of the material into silica evanorating dish and add 1 mL of
Sample i reparation	dilute sulphuric acid. Heat cently in the beginning and then evaporate almost
	to drvness on a water-bath
	2 Ignite the residue over a smokeless flame to eliminate subhuric acid
	2. Ignite the residue over a smokeless findine to eminiate surplitute deld.
	evaporate to dryness on a water bath.
	4. Dissolve the residue in water, neutralize, if required, with dilute ammonium

 $41 \mid M \ o \ M \ - \ A \ l \ c \ o \ h \ o \ l \ i \ c \ B \ e \ v \ e \ r \ a \ g \ e \ s$

	hydroxide and make up the volume to 25 mL.		
Method of Analysis	1. To detect copper contamination, if any, in any of the reagents, blank		
	experiment shall be carried out using the same quantities of the reagents.		
	2. There are two variations of the method		
	(a) Without extraction, and (b) With extraction.		
	(a) Procedure (without extraction)		
	3. Take in 50 mL Nessler tube 10 mL of the test solution prepared as		
	described above.		
	4. Add 2 g of citric acid and 10 mL of dilute ammonium hydroxide. Make up to 50 mL with water.		
	5. Prepare a series of control solutions, each containing in 50 mL, 2 g of citric acid and 10 mL of dilute ammonium hydroxide together with an increasing amount of copper, namely, 0.1 mL, 0.2 mL, 0.4 mL, 0.6 mL, 0.8 mL and 1.0 mL of standard copper solution.		
	6. The test solution and controls should be free from any turbidity.		
	7. Cool all solution to 20 °C, add 2 mL of diethyldithiocarbamate solution to		
	each and match the test solution against the control solution		
	8. Note the number of millilitres of standard copper solution added in the		
	control of the test solution having, as nearly as possible, the same intensity		
	of colour as that of the test solution		
	(b) Procedure (with extraction)		
	9. Extract immediately the copper organometallic compound produced as		
	described in the last paragraph under (a) with four successive portions, 2.5 mL each, of carbon tetrachloride and compare the colour of the solution so obtained in a colorimeter with the extracts of control solution similarly prepared		
	10 Chloroform may be used but earbon totreabloride is better as it is almost		
	10. Chloroform may be used but carbon tetrachloride is better as it is almost insoluble in water and forms clearer solution, which separates quickly		
	Calculate compare of follower		
Calculation with units of	Calculate copper as follows:		
expression	Copper (as Cu), in ppm = 0.2845×12.5 V		
	Where		
	V = volume of standard copper solution in the control solution which gives the		
	closest match, in mL.		
Reference	1. AOAC 960.17, Copper in Beer, Direct, Non ashing Method		
	2. A.O.A.C 15th edn, Official Method 960.40 Copper in Food		
Approved by	Scientific Panel on Methods of Sampling and Analysis		

	Determination of Copper using Potassium Ferrocyanide
ISSAT FOOD SAFETY AND STANDARDS	
AUTHORITY OF INDIA Inspiring Trust, Assuring Safe & Nutritious Food	
Ministry of Health and Family Welfare, Government of India	
Method No.	FSSAI 13.025:2021 Revision No. & Date 0.0
Scope	Two methods, namely, diethyldithiocarbamate method and potassium
	ferrocyanide method are employed.
	The potassium ferrocyanide method is easier to perform and sufficiently
	sensitive and accurate for routine type of analysis. The diethyldithiocarbamate
	method is more sensitive and shall serves as a referee method in case of dispute
	or where zinc is present.
Caution	1. Sulphuric acid: Concentrated sulfuric acid is extremely corrosive and can
	cause serious burns when not handled properly. This chemical is unique
	because it not only causes chemical burns, but also secondary thermal burns
	as a result of dehydration. This dangerous chemical is capable of corroding
	skin, paper, metals, and even stone in some cases. If sulfuric acid makes
	direct contact with the eyes, it can cause permanent blindness. If ingested,
	this chemical may cause internal burns, irreversible organ damage, and
	possibly death.
	2. Hydrochloric acid: It is a hazardous liquid which must be used with care.
	The acid itself is corrosive, and concentrated forms release acidic mists that
	are also dangerous. If the acid or mist come into contact with the skin, eyes,
	or internal organs, the damage can be irreversible or even fatal in severe
	cases.
	3. Ammonia solution: Contact with concentrated ammonia solutions may cause
	corrosive injury including skin burns, permanent eye damage or blindness.
	The full extent of eye injury may not be apparent for up to a week after the
	A Niccia and A Marcha for the formula dammonia can also cause frostolite injury.
	4. Ninc acid: May be fatal if innaled. Causes severe eye and skin burns. Causes
	severe respiratory and digestive tract burns. Strong oxidizer. Contact with
	other material may cause a me. Acute puttionary edema of chromic
	obstructive lung disease may occur from initiation of the vapors of mutic
	membranes
	5 Citric acid: Ingestion May irritate and cause stomach pain, vomiting and
	diarrhae Skin contact Skin irritation is not anticipated when used normally
	Eve contact Causes serious ave irritation. Particles in the aves may cause
	irritation and smarting
	6 Copper sulphate: Copper sulfate can cause severe eve irritation Fating large
	amounts of conner sulfate can lead to nausea vomiting and damage to body
	tissues blood cells the liver and kidneys
	7 Acetic acid: Acetic acid can be a hazardous chemical if not used in a safe and
	appropriate manner. This liquid is highly corrosive to the skin and eves and
	because of this, must be handled with extreme care. Acetic acid can also be
	damaging to the internal organs if ingested or in the case of vapor inhalation.
	8. Potassium ferrocyanide: Potassium ferrocyanide can be absorbed into the
	body by inhalation or ingestion of the powder. It is a skin and eve irritant.
	Inhalation will cause sore throat and coughing.
	9. Ammonium chloride: Exposure to Ammonium chloride is moderately
	hazardous, causing irritation, shortness of breath, cough, nausea, and

	headache.
Principle	Copper solutions react with Potassium ferrocyanide solutions and forms red-
	brown solutions of Copper (II) hexacyanoferrate.
Apparatus / Instruments	1. General Glassware and apparatus (Refer 2.0 at page no. 2).
	2. Nessler tubes - Flat bottom tubes of thin, colourless glass, about 25 mm in
	diameter and about 150 mm in length and graduated at 50 mL. The depth
	measured internally from graduation mark to the bottom shall not vary by
	more than 2 mm in the tubes used for the test.
Materials and Reagents	1. Alcoholic beverages.
	2. Concentrated Sulphuric acid.
	3. Concentrated Nitric acid.
	4. Concentrated Hydrochloric acid.
	5. Citric acid, AR grade.
	6. Ammonium hydroxide.
	7. Copper sulphate (CuSO ₄ .5H ₂ O).
	8. Ammonium chloride, AR grade.
	9. Acetic acia. 10. Detessium ferroevenide
D ucnovation of upgants	1. Dilute cululuri e orid emmercianetelu 100((cu/u)
r reparation of reagents	1. Diffue support acid, approximately 10% (V/V).
	volumes of concentrated hydrochloric acid.
	3. Standard copper solution – Dissolve 1.119 g of copper sulphate
	(CuSO ₄ .5H ₂ O) in water and dilute to one litre. Dilute 10 mL of this solution
	to 100 mL. One millilitre of the diluted solution contains 0.028545 mg of
	copper. The diluted solution shall always be prepared immediately before use.
	4. Acetic acid, approximately 5% by weight.
	5. Potassium ferrocyanide solution, approximately 4% by weight.
Sample Preparation	1. Transfer 20 mL of the material into silica evaporating dish and add 1 mL of dilute subburie acid
	2. Heat gently in the beginning and then evaporate almost to dryness on a water- bath.
	3. Ignite the residue over a smokeless flame to eliminate sulphuric acid.
	4. Cool, dissolve the residue in 2 mL of water, add three drops of aqua regia and
	evaporate to dryness on a water bath.
	5. Dissolve the residue in 2 mL of water, add three drops of aqua regia and
	evaporates to dryness on a water bath.
	6. Dissolve the residue in 2 mL of dilute hydrochloric acid and warm gently till
	the residue is dissolved.
	7. Add 0.5 g of ammonium chloride and dilute to 15 mL with water distilled in an all-glass apparatus.
	8. Add dilute ammonium hydroxide till alkaline. Boil off excess of ammonia
	and filter into a clean Nessler tube.
	9. Cool and then render the solution acidic with acetic acid (3 to 5 drops are
	usually sufficient).
Method of Analysis	1. Dilute the above solution to 40 mL. Add 0.5 mL of potassium ferrocyanide
	solution, stir and make up the volume to 50 mL.
	Note-If copper is more, a lesser amount, say 10 mL of the material may be taken
	for the test.
	2. Prepare a series of control solutions each containing in 50 mL, 0.5 g of

44 | MoM – Alcoholic Beverages

	ammonium chloride, 3 to 5 drops of acetic acid and 0.5 mL of potassium ferrocyanide solution together with an increasing amount of copper, namely, 2 mL, 4 mL, 6 mL, 8 mL and 10 mL of the standard copper solution.	
	3. Compare the test solution (1) with control solutions and note the millilitres of	
	standard copper solution added in the control of the test solution having, as	
	nearly as possible, the same intensity of colour as that of the test solution.	
Calculation with units of	Calculate copper as follows:	
expression	Copper (as Cu), in ppm = $0.2845 \times 12.5V$	
	Where	
	V= volume of standard copper solution in the control solution which gives the	
	closest match, in mL.	
Reference	1. AOAC 960.17, Copper in Beer, Direct, Non ashing Method	
	2. A.O.A.C 960.40, 1965, 15th edn, Official Method, Copper in Food	
Approved by	Scientific Panel on Methods of Sampling and Analysis	

	Determin	ation of Copper - Cuperthol	Method
FOOD SAFETY AND STANDARDS			
AUTHORITY OF INDIA Inspiring Trust, Assuring Safe & Nutritious Food			
Ministry of Health and Family Welfare, Government of India	ESSAL 12 026:2021	Davisian No. 8- Data	0.0
Niethod No.	FSSAI 15.020:2021	Revision No. & Date	U.U Superthal Mathad
Scope	Lesumation of copper prese	al if inholad. Causas savera av	upertitol Method
Caution	1. Nutric acid: May be fatt	digastive treat hymne. Strong	e and skin burns. Causes
	severe respiratory and	digestive tract burns. Strong	g oxidizer. Contact with
	obstructivo lung discou	cause a fife. Acute pullion	ary edema or chronic
	acid Corresive to t	matal Targat Organs: Lung	or the vapors of multi-
	membranes	netai. Target Organs. Lung	s, eyes, skill, illucous
	2 A cetic acid: A cetic aci	d can be a hazardous chemical	if not used in a safe and
	appropriate manner Th	his liquid is highly corrosive t	to the skin and eves and
	because of this must h	be handled with extreme care	Acetic acid can also be
	damaging to the interna	al organs if ingested or in the c	ase of vapor inhalation.
	3. Diethanolamine: Cau	ses serious eve damage.	Causes skin irritation.
	Suspected of causing	cancer. May cause respirato	ry irritation. May cause
	damage to organs throu	igh prolonged or repeated expo	osure.
	4. Methanol: Methanol is	highly flammable and toxic.	Direct ingestion of more
	than 10 mL can cause	permanent blindness by destru	action of the optic nerve,
	poisoning of the centr	ral nervous system, coma an	d possibly death. These
	hazards are also true if	methanol vapors are inhaled.	
	5. Carbon disulfide: H	lighly flammable liquid and	d vapour. Harmful if
	swallowed. Causes skir	n irritation. Causes serious eye	irritation.
	6. Sodium acetate: May c	ause irritation to skin, eyes, an	d respiratory tract
Principle	Divalent copper forms a	a coloured complex with C	uperthol. Based on the
Appointing / Instruments	absorbance of the coloured	a complex solution copper is a	etermined.
Apparatus / Instruments	2 Photometer - Spectron	hotometer (with blue-green o	10. 2). r green filter) set at 1/15
	nm and with 40-50 mm	cells	r green mer) set at 445
	3. Copper-free glassware	: - Clean all glassware with	0.1M HNO ₂ and rinse
	thoroughly with Cu-fre	e distilled water.	
Materials and Reagents	1. Alcoholic beverages.		
	2. Diethanolamine ((HC	$OCH_2CH_2)_2NH$	
	3. Methanol.		
	4. Carbon disulfide.		
	5. Copper sulphate CuS	$O_4.5H_2O$ (free of whitish depo	osit of lower hydrates).
	6. Pure Cu wire or foil.		
	7. Nitric acid.		
	8. Anhydrous Sodium a	cetate (CH ₃ COONa)	
	9. Acetic acid (CH_3COC	JII).	
Prenaration of reagents	1 Diethanolamine ((H)	OCH_CH_)_NH) solution	- Dissolve 40 ml
	diethanolamine in 200	mL methanol	- DISSUIVE 4.0 IIIL
	2. Carbon disulfide soluti	ion: - Add 1.0 mL CS ₂ (Free	of precipitate S) to 200
	mL methanol.		51 proceptuite 5) to 200
	3. Cuprethol solution: - M	lix 3 volumes solution (a) and	one volume solution (b).
	Prepare fresh daily. Al	so mix equal volumes of solut	tion (a) and methanol for
	blank.	×	· ·

	Copper standard solutions: -
	i) Stock solution (conc. 1mg/mL): - Dissolve 3.93 g CuSO ₄ .5H ₂ O (free of
	whitish deposit of lower hydrates) and dilute to 1 L with H ₂ O or dissolve
	1.000 g pure Cu wire or foil in 72 mL HNO ₃ (1+4) by warming. Boil to expel
	fumes, cool, and dilute to 1 L with H_2O .
	ii) Working solution (conc 10 μ g/mL): -Prepare immediately before use by
	diluting 5 mL stock solution with Cu-free distilled H_2O to 500 mL in
	volumetric flask
	4 Buffer solution: $- nH 44$ Dissolve 63.3 g anhydrous sodium acetate
	(CH COONs) in as 800 mL H O containing 65 mL sectio acid (CH COOH)
	Dilute to 1 L with H_2O .
	5. Copper-free distilled water: - Use distilled water redistilled from all-glass
	apparatus throughout method.
Procedure / Extraction	1. Preparation of standard curve -Into series of glass-stoppered 100 mL
	volumetric flasks add 0.0, 1.0, 2.0, 4.0, 8.0 and 12.0 mL Cu working
	standard solution containing 0.0, 0.4, 0.8, 1.6, 3.2, and 4.8µg/mL Cu,
	respectively.
	2. Add H ₂ O to 12 mL in each flask. Dilute to volume with degassed Low-Cu
	beer.
	3. Preparation of test portion - Cool bottle or Can of beer / wine and shake
	thoroughly immediately before opening.
	4. Let gas bubbles leave liquid before removing cap or puncturing can.
	5. Discard ca $1/3$ of beer and degas by swirling.
	6. Remove test portion directly from container, mix, and proceed.
	7. Use 0.0 Solution to zero instrument, and obtain A (absorbance) or scale
	readings for 0.1, 0.2, 0.4, 0.8, and 1.2 µg/mL added Cu.
	8. A over this range follows Beer's Law. Calculate average factor. F.
	converting A or scale reading to ug/mL Cu.
	9. If instrument response is not linear, draw and use smooth curve for
	calculating ug/mL Cu
	Determination
	10 Slowly pour 50 mL cold beer into 50 mL graduate avoid foaming Transfer
	to 125 mL flask add 25 mL buffer solution and mix
	11 Measure two 30 mL aliquots in 50 mL graduate and transfer to separate 50
	mL flasks
	12 Add 3 mL cuprethol solution to one flask and 3 mL blank solution to other
	Mix each and let stand 10 min
	13 Zero instrument with blank Determine 4 in same size cell and at same
	wavelength used in calibration
Calculation with units of	Calculate $\mu g/m I$. Cu by multiplying A or scale reading by F or use curve
ownrossion	Calculate µg/III. Cu by multiplying A of scale reading by F, of use curve.
Pafaranca	$\Delta O \Delta C 972$ 12-1973 conner in heer. Currethal method
Neterence	
Approved by	Scientific Panel on Methods of Sampling and Analysis

Determination of Methyl Alcohol - Spectrophotometric Method

Method No.	FSSAI 13.027:2021 Revision No. & Date 0.0
Scope	This spectrophotometric method determines the methyl alcohol present in
	alcoholic beverages.
Caution	 Sulphuric acid: Concentrated sulfuric acid is extremely corrosive and can cause serious burns when not handled properly. This chemical is unique because it not only causes chemical burns, but also secondary thermal burns as a result of dehydration. This dangerous chemical is capable of corroding skin, paper, metals, and even stone in some cases. If sulfuric acid makes direct contact with the eyes, it can cause permanent blindness. If ingested, this chemical may cause internal burns, irreversible organ damage, and possibly death. Methanol: Methanol is highly flammable and toxic. Direct ingestion of more than 10mL can cause permanent blindness by destruction of the optic nerve, poisoning of the central nervous system, coma and possibly death. These hazards are also true if methanol vapors are inhaled. Phosphoric acid: Repeated or prolonged exposure to phosphoric acid mist can lead to chronic eye irritation, severe skin irritation, or prolonged respiratory tract issues. Potassium permanganate: Potassium Permanganate can affect you when breathed in. Contact can severely irritate and burn the skin and eyes with possible eye damage. Breathing Potassium Permanganate can irritate the nose and throat. Breathing Potassium Permanganate can irritate the lungs causing coughing and/or shortness of breath. Sodium salt of chromotropic acid: Causes skin irritation. Causes serious eye irritation.
	headache, dizziness, vomiting, nausea, and unconsciousness. Long-term effects of working with this substance are not well-known at this time, so care and caution should be taken when handling isopropyl alcohol and isopropyl products as a proventative measure
Principle	Methanol is oxidized to formaldehyde (methanol) by potassium permanganate
Timeipie	(acidified by phosphoric acid). The amount of formaldehyde is determined by the violet color formed by the reaction of chromotropic acid in a sulfuric medium.
Apparatus / Instruments	1. General Glassware and apparatus (Refer 2.0 at page no. 2).
	2. Separating funnel.
	3. Spectrophotometer
Materials and Reagents	1. Alcoholic beverages 2. Potassium permanganate
	2. Potassium permanganate 3. Phosphoric acid (H ₂ PO ₄)
	4. Sodium salt of chromotropic acid (sodium 1.8- dihydroxynaphthalene - 3.6
	disulfonate)
	5. Methanol
	6. Ethanol
	7. Isopropyl alcohol
	8. Sulphuric acid (H_2SO_4)
Preparation of reagents	1. Potassium permanganate solution: 3.0 g KMnO_4 and $15.0 \text{ mL H}_3\text{PO}_4$ shall be dissolved in 100 mL water. The solution shall be prepared monthly.
	uissoiveu in 100 mL water. The solution shall be prepared monthly.

 $48 \mid M \ o \ M \ - \ A \ l \ c \ o \ h \ o \ l \ i \ c \ B \ e \ v \ e \ r \ a \ g \ e \ s$

	2. Sodium salt of chromotropic acid (sodium 1,8- dihydroxynaphthalene - 3,6
	disulfonate) 5% aqueous solution (w/v). If not clear, the sodium salt
	chromotropic acid shall be filtered. It shall be prepared weekly.
	Purification of chromotropic acid
	3. If absorbance of blank is greater than 0.05, the reagent shall be purified as
	follows: 10 g chromotropic acid or its Na salt shall be dissolved in 25 mL water
	(add 2 mL H_2SO_4 shall be added to the aqueous solution of the salt to convert it
	to free acid).
	4. Add 50 mL of methanol and heat to just boiling and filter.
	5. Add 100 mL isopropyl alcohol to precipitate free chromotropic acid.
	6. More isopropyl alcohol may be added to increase yield of purified acid.
	Methanol Stock solution
	7. Dilute 1.0 g methanol (99.99% pure) to 100 mL with 40% (v/v) ethanol
	(methanol free). Dilute to 10 mL of this solution to 100 mL with 40% ethanol
	(methanol free). This is 1000 ppm solution.
	Methanol Standard solution:
	8. Dilute appropriate volume of methanol (11,1,4) to 100 mL vol. flasks with 40%
	ethanol to get final concentration of 20, 40, 60, 80 and 100 ppm of methanol.
Method of Analysis	1. Take 50 mL of sample in a simple still and distil, collecting about 40 mL of
	distillate.
	2. Dilute 1 mL of distillate to 5mL with distilled water and shaken well.
	3. Take 1 mL of this solution, 1 mL of distilled water (for blank) and 1 mL of
	each of the methanol standards in to 50 mL stoppered test tubes and keep them
	in an ice-cold water bath.
	4. Add to each test tube, 2 mL of KMnO₄ reagent and keep aside for 30 min.
	5. Decolourize the solution by adding a little sodium bisulphite and add 1 mL of
	chromotropic acid solution.
	6. Mix well and add 15 mL of sulphuric acid slowly with swirling and place in hot
	water bath maintaining 80 °C for 20 min. Observe the colour development from
	violet to red.
	7. Cool the mixture and measure the absorbance at 575 nm using 1cm cuvette cell.
Calculation with units of	Calculate methanol content in g/100 litres of absolute alcohol as follows:
expression	Methanol = $(A_2 \times C \times D \times 1000 \times 100 \times 100)/(A_1 \times S)$
_	Where,
	A_2 = absorbance of sample solution
	C = concentration of methanol std. solution
	D = dilution factor for sample solution
	A_1 = absorbance of methanol std. solution
	S = ethanol content (%) of liquor sample (v/v)
Reference	1. IS Standard – IS 3752:2005, Alcoholic Drinks, Methods of Test
	2. IS Standard – IS 7585:1995, Wines, Methods of Analysis
Approved by	Scientific Panel on Methods of Sampling and Analysis

Determination of Methyl Alcohol - Gas Chromatographic Method

Ministry of Health and Family Welfare, Government of India		
Method No.	FSSAI 13.028:2021 Revision No. & Date 0.0	
Scope	This Gas chromatographic method determines the methyl alcohol present in	
_	alcoholic beverages.	
Caution	1. Methanol: Methanol is highly flammable and toxic. Direct ingestion of more	
	than 10 mL can cause permanent blindness by destruction of the optic nerve,	
	poisoning of the central nervous system, coma and possibly death. These	
	hazards are also true if methanol vapors are inhaled.	
	2. n-Pentanol: The substance is irritating to the eyes, skin and respiratory tract.	
	If swallowed the substance may cause vomiting and could result in aspiration	
	pneumonitis. The substance may cause effects on the central nervous system.	
Principle	Methyl alcohol is estimated using GC by the comparison of Peak areas of known	
F	quantities of authentic standards of methanol, n-propanol and test sample.	
Apparatus / Instruments	1. General Glassware and apparatus (Refer 2.0 at page no. 2)	
rippurutus / instruments	2 Gas Chromatograph FID Detector split injection port fixed with capillary	
	column (HP Carbowax 20M of 30m x 0.32mm ID x 0.25 um film thickness	
	or SPB 20 capillary column of 30m x 0.25mm ID x 1.0 µm film thickness)	
	3 No or He as carrier gas at a flow rate of 1 0mL/min	
	4 The detector and injector port temperatures are at 250 °C. Oven temperature	
	is at 45 °C for 4 min and then raise to 100 °C/min at the rate of 10 °C/min and	
	finally at to 200 °C for 10 min at the rate of 15 °C /min (Optimum operating	
	conditions may vary with type of column used and instrumental	
	characteristics)	
	5 Syringo 10 uL Hamilton Co. or aquivalent	
Matarials and Pasgants	1. Alcoholic beverages	
Wrater fais and Keagents	2. Ethanol Methanol free	
	2. Ethanoi – Wethanoi free.	
	4 Methanol	
Preparation of reagents	1. N-Pentanol Internal standard $= 0.05\%$ w/v n-pentanol in 40% ethanol (v/v)	
reparation of reagents	2 Methanol Stock solution: Dilute 1.0 g methanol (99.99% pure) to 100 mJ	
	with 40% (v/v) ethanol methanol free Dilute 10 mL of this solution to 100	
	mL with 40% ethanol	
	3 Methanol Standard solution: Transfer 5 mL of the above solution to a 10 mL	
	stoppered test tube and add 1 mL of n-pentanol internal std solution and mix	
	well.	
Preparation of Test Samples	Transfer 5 mL of sample into a 10 mL stoppered test tube and add 1 mL of n-	
	pentanol internal standard and mix well.	
Method of Analysis	1. Inject 2 µL of methanol standard solution into GC and record the	
	chromatographic profile.	
	2. Adjust the operating parameters and attenuation to obtain good resolution of	
	the peaks.	
	3. Determine the retention time of methanol and n-pentanol.	
	4. Inject 2 µL sample solution into GC and record the chromatogram.	
Calculation with units of	Methanol (in grams /100L of Absolute alcohol)	
expression	$= (R_2 \times C \times D \times 1000 \times 100 \times 100) \div (R_1 \times S)$	
-	Where.	

 $50 \mid M \ o \ M \ - \ A \ l \ c \ o \ h \ o \ l \ i \ c \ B \ e \ v \ e \ r \ a \ g \ e \ s$

	R_2 = peak ratio of methanol to n-pentanol for sample solution	
	C = concentration of methanol in std. solution in g/mL	
	D = dilution factor for sample solution	
	R_1 = peak ratio of methanol to n-pentanol for std. solution	
	S = ethanol content of liquor sample in % (v/v).	
Reference	1. IS Standard – IS 3752:2005, Alcoholic Drinks, Methods of Test	
	2. IS Standard – IS 7585:1995, Wines, Methods of Analysis	
Approved by	Scientific Panel on Methods of Sampling and Analysis	

	Determination of Total Sulphur Dioxide (for Wines only) - Modified Monier	
Issai	Williams Method (Shiphton's Method)	
AUTHORITY OF INDIA		
Ministry of Health and Family Welfare, Government of India		
Method No.	FSSAI 13.029:2021 Revision No. & Date 0.0	
Scope	Modified Monier Williams Method (Shiphton's Method) - This method is useful	
	to determine total sulphur dioxide present in wines.	
Caution	can cause burns in the eves which may lead to permanent eve damage	
	 Hydrochloric acid: Hydrochloric acid is a hazardous liquid which must be used with care. The acid itself is corrosive, and concentrated forms release acidic mists that are also dangerous. If the acid or mist come into contact with 	
	the skin, eyes, or internal organs, the damage can be irreversible or even fatal in severe cases.	
	3. Hydrogen peroxide: Hydrogen peroxide is a strong oxidizer (moderate oxidizer in lower concentrations), and can be corrosive to the eves, skin, and	
	respiratory system. This chemical can cause burns to the skin and tissue	
	damage to the eyes. Take special caution to avoid contact with hydrogen	
	peroxide.	
	4. Carbon dioxide. Carbon dioxide gas can cause nijury of death. A high carbon dioxide gas concentration can cause sufficient This sign should be posted	
	outside each entrance to a carbon dioxide storage room.	
Principle	Sulphur dioxide on treatment with hydrogen peroxide oxidized to sulphuric acid	
-	and estimated using sodium hydroxide in presence of indicator bromophenol	
	blue.	
Apparatus / Instruments	1. General Glassware and apparatus (Refer 2.0 at page no. 2).	
	2. Round bottom flask – 500 mL capacity connected to N_2 or CO_2 inlet source,	
	coiled condenser, receiver and trap as shown in the figure.	
	SF : 18 (Part VIII) - 1361	
	AATER WATER	
	Fig. 1 Address of American's for the Decremention of Scheme Deceme	
	Figure is adopted from FSSAI Manual of Methods of Analysis of Foods:	
	Alcoholic beverages, 2019, Page 51.	
Materials and Reagents	1. Alcoholic beverages	
	2. Hydrogen peroxide	
	4 Bromonhenol indicator	
	5. Ethyl alcohol	
	6. Concentrated Hydrochloric acid – sp gr 1.16	

	7. Carbon dioxide gas from a cylinder			
Preparation of reagents	1. Hydrogen peroxide solution – Dilute a 30% hydrogen peroxide solution with			
	distilled water so as to obtain a 3% solution of hydrogen peroxide.			
	2. Sodium hydroxide -0.01 N.			
	3. Bromophenol indicator solution – Dissolve 0.1 g of bromophenol blue in 3			
	mL of 0.05N sodium hydroxide solution and 5 mL of ethyl alcohol (90%) by			
	warming gently. Make up to 250 mL in a volumetric flask with 20% ethyl			
	alcohol			
Method of Analysis	1 Transfer 25 mL of Hydrogen perovide solution to Frienmever flack (D and t			
	mL to Peligot tube (L). Assemble the apparatus as shown above			
	2 Introduce into the flask (C) 300 mL water and 20 mL of conc. HCl through			
	the dropping funnel (E)			
	3 Run a steady current of cold water through the condenser (E)			
	4 To expel air from the system boil the mixture contained in the flask (C) for			
	a short time in a current of Carbon dioxide gas previously passed through the			
	wash bottle (A)			
	5 Weigh accurately about 25 g of wine sample and transfer with little quantity			
	of water into the flack (C) through the dropping funnel (E). Wash the			
	dropping funnel with a small quantity of water and run the washings into			
	flask (C)			
	6 Distill by beating the mixture contained in the flask (C) in a slow current of			
	Carbon dioxide gas passed previously through the wash bottle (Λ) for 1 h			
	7 Just before the and of the distillation stop the flow of water in the condenser			
	(This causes the condensar to become hot and drives off the residual traces			
	of subbur dioxide rateined in the condenser)			
	ot sulphur dioxide retained in the condenser).			
	o. when the derivery tube (Π) just above the Effentineyer flask (J) becomes not to touch disconnect the stopper (G) immediately			
	9 Wash the delivery tube (H) and the contents of the Deligat tube (L) with			
	y ash the derivery rule (n) and the contents of the Peligot rule (L) with water into the Erlenmeyer flack (I)			
	water into the Erienmeyer flask (J).			
	10. Cool the contents of the Erlenmeyer flask to room temperature, add a few			
	drops of bromophenol blue indicator and titrate with standard sodium			
	hydroxide solution (Bromophenol blue is unaffected by carbon dioxide and			
	gives a distinct colour change in cold hydrogen peroxide solution).			
	11. The colour changes from yellow to light blue. Carry out a blank			
	determination using 20 mL of concentrated hydrochloric acid diluted with			
	300 mL of water.			
Calculation with units of	Sulphur Dioxide $(\frac{\text{IIIg}}{1}) = [32000(V - v) \text{ N}] \div W$			
expression	kg			
	Where,			
	V = volume in mL of standard sodium hydroxide solution			
	required for the test sample.			
	v = volume of standard sodium hydroxide solution required for			
	the blank determination.			
	N = normality of standard sodium hydroxide solution			
	W = weight in g of the sample taken for test			
Reference	I.S.I. Hand book of Food Analysis (Part VIII) – 1984 page 12, Determination of			
	Sulphur dioxide			
Approved by	Scientific Panel on Methods of Sampling and Analysis			

Determination of Total Sulphur Dioxide (for Wines only) -Rosaniline Colorimetric Method

Method No.	FSSAI 13.030:2021 Revision No. & Date 0.0				
Scope	Rosaniline Colorimetric Method - This method is useful to determine total				
	sulphur dioxide present in wines.				
Caution	1. p- Rosaniline hydrochloride: When heated to decomposition this compound				
	emits very toxic fumes of hydrogen chloride and nitrogen oxides.				
	2. Hydrochloric acid: Hydrochloric acid is a hazardous liquid which must be				
	used with care. The acid itself is corrosive, and concentrated forms				
	release acidic mists that are also dangerous. If the acid or mist come into				
	contact with the skin, eyes, or internal organs, the damage can be irreversible				
	or even fatal in severe cases.				
	3. Formaldehyde has been shown to cause cancer in laboratory animals and may				
	cause cancer in humans. It also may cause birth defects. It is highly toxic if				
	swallowed, inhaled, or absorbed through skin or mucous membranes.				
	Formaldenyde is corrosive, and the eyes are especially vulnerable. An air				
	and 20 ppm can cause permanent clouding of the correst after only one				
	and 20 ppin can cause permanent clouding of the comea after only one avposure Formaldabyda is also a sancitizing agent Subsequent avposures				
	can produce symptoms more quickly and at lower concentrations. Symptoms				
	of exposure may include coughing eye or skin irritation allergic reactions				
	vomiting and diarrhea				
	4 Mercuric chloride: Ingestion of metallic chloride-Metallic taste. Sore throat				
	Burning sensation Nausea Abdominal pain Vomiting Diarrhoea Shock or				
	collapse.				
	5. Sodium thiosulphate: Inhalation: Sore throat, shortness of breath coughing,				
	and congestion. Eye Contact: Irritation to eyes and mucous. Skin Contact:				
	Irritation, itching, dermatitis Ingestion: Irritation to mucous membranes.				
	6. n-Hexyl alcohol: May cause toxic effects if inhaled or absorbed through skin.				
	Inhalation or contact with material may irritate or burn skin and eyes. Fire				
	will produce irritating, corrosive and/or toxic gases. Vapors may cause				
	dizziness or suffocation				
Principle	A stable dichlorosulfitomercurate complex, obtained by reaction between SO_2				
	with potassium /sodium tetrachloromercurate is reacted with pararosaniline and				
	tormaldehyde torms pararosaniline methyl sulfonic acid dye. It absorbance				
	measured and support dioxide is estimated.				
Apparatus / Instruments	General Glassware and apparatus (Refer 2.0 at page no. 2).				
Materials and Reagents	1. Alconolic beverages				
	2. p- Kosaniline HCl				
	5. Hydrochloric acid (HCI) 4. Formaldabuda (HCHO)				
	4. Formaldenyde (HCHO) 5. Marcuria ablarida (HgCl.)				
	6 Sodium chloride (NaCl)				
	7 Sodium hisulphate (NaHSO _a)				
	8 Indine (I_2)				
	9. Sodium thiosulphate (Na $_{2}S_{2}O_{2}$)				
	10. Starch				
	11. n-Hexyl alcohol				

FOOD SAFETY AND STANDARDS AUTHORITY OF INDIA Inspiring Trust, Assuring Safe & Nutritious Food

Preparation of reagents	1. Colour reagent- Weigh 100 mg p- rosaniline HCl into 250 mL volumetric		
	flask and dissolve in 200 mL H_2O . Add 40 mL HCl (1+1), mix, and dilute to		
	volume with H ₂ O. Let stand 15 min before use. Store in brown, glass-		
	stoppered bottle in refrigerator.		
	. Formaldehyde solution- Dilute 5 mL 40% HCHO solution to 1 L with H_2O		
	and store in brown, glass-stoppered bottle in refrigerator.		
	3. Mercury stabilizing solution - Dissolve 27.2 g HgCl ₂ and 11.7 g NaCl in		
	H_2O and dilute to 1 L with H_2O .		
	libration		
	4. Accurately weigh 250 mg NaHSO ₂ into exactly 50 mL $0.1M$ I ₂ solution in		
	glass-stoppered flask. Let stand at room temperature for 5 min. Add 1 mL		
	HCL and titrate excess I_2 with 0 1M Na ₂ S ₂ O ₂ using 1% aqueous starch		
	solution as indicator (1 mL 0.1M I ₂ consumed= 3.203 mg SO ₂ or 5.20 mg		
	NaHSO ₂) From results of NaHSO ₂ assay prepare solution containing 10 mg		
	SO_{2}/mL (ca 8 6-9 0 g NaHSO ₂ /500mL) (Solution I)		
	5 Transfer 100 mJ. Hg stabilizing solution to 500 mJ. glass-stoppered		
	volumetric flask Add 1 00 mL Solution L and dilute to volume with H ₂ O		
	$(1\text{mL}=20\text{ug SO}_2)$ (Solution II)		
	6 Using 10 mL graduate containing 1 drop n-hexyl alcohol as antifoam		
	transfer 10 mL portions of cold undigested beer (preferably of low SO ₂		
	content) into series of eight 100mL volumetric flasks		
	7. To series add 0.0, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, and 8.0 mL Solution II		
	$(0-160 \text{ ug } SO_2)$. Dilute to volume with H ₂ O, and mix.		
	8. Transfer 25 mL aliquots of each solution to separate 50 mL volumetric		
	flasks. To each flask add 5 mL color reagent Mix and add 5 mL HCHO		
	solution. Mix, dilute to volume with H_2O_2 mix, and hold in 25 °C water bath		
	30 min.		
	Read colour in spectrophotometer at 550 nm or in photometer with green		
	filter.		
	Plot absorbance (A) as ordinate against μ g SO ₂ added to beer as abscissas		
	(colour follows Beer's law over range).		
	. Calculate calibration factor F, converting readings to $\mu g SO_2$ in 25 mL		
	aliquot used, or convert directly to $\mu g/mL SO_2$.		
Sample Preparation	1. Using pipets, add 2 mL Hg stabilizing solution and 5 mL 0.05M H ₂ SO ₄ to		
	100 mL volumetric flask.		
	2. Measure 10 mL cold, undegassed beer into 10 mL graduate containing 1 drop		
	n-hexyl alcohol, and add to volume flask.		
	3. Swirl gently, and add 15 mL 0.1M NaOH. Swirl, and hold 15 s.		
	4. Add 10 mL 0.05M H ₂ SO ₄ , then H ₂ O to volume, and mix thoroughly. Transfer		
	25 mL aliquot to 50 mL volumetric flask.		
Method of Analysis	1. To solution in 50 mL volumetric flask, add dilute to volume with H_2O .		
	2. Mix, and hold in 25 °C bath 30 min.		
	3. Read colour as above, using cells of same size and same instrument settings.		
	4. Correct for blank as follows: Measure 10 mL cold, undegassed beer into 100		
	mL volumetric flask.		
	5. Add 0.5 mL 1% aqueous starch solution, then 0.05M I_2 solution, drop wise		
	until permanent bluish tinge persists. Add 1 drop more, dilute to volume, and		
	mix thoroughly. When blue fades, develop colour in 25 mL aliquots as above.		
	(Colour readings for I_2 blanks are usually low and uniform; when test is		
	performed on series of similar beers, blank tests on all may be unnecessary.)		

Calculation with units of expression	Sulphur dioxide $\left(\frac{\mu g}{mL}\right) = (A_s - A_b) \times F$		
	Where,		
	$A_s = A$ of test solution (or photometric reading with green filter equivalent to A)		
	$A_b = A \text{ of } I_2 \text{ blank},$		
	F= factor derived from point no. 11 (Preparation of reagents) for converting A to		
	μ g SO ₂ in aliquot, or directly to μ g/mL SO ₂ .		
Reference	AOAC 963.11-1964, Sulfur dioxide in beer. Colorimetric method		
Approved by	Scientific Panel on Methods of Sampling and Analysis		

1	Determination of Tannins (for Wines only)			
AUTHORITY OF INDIA				
Ministry of Health and Family Welfare, Government of India		1	1	
Method No.	FSSAI 13.031:2021	Revision No. & Date	0.0	
Scope	Spectrophotometric Meth	od - This method is useful	for the determination of	
	tannins present in alcoholic beverages.			
Caution	1. Sodium tungstate: Acute oral toxicity.			
	2. Phosphomolybdic acid: Contact with skin causes irritation and possible burns,			
	especially if the skin is wet or moist. May be harmful if absorbed through the			
	skin. Ingestion: May cause severe gastrointestinal tract irritation with nausea,			
	vomiting and possible burns. Inhalation: May cause burns to the respiratory			
	tract.			
	3. Sodium Carbonate: Eye contact can cause permanent corneal injury and			
	possible burns. Avoid ingestion or inhalation of dust. Due to these potential			
	hazards, sodium carbonate should be handled with care.			
	4. Phosphoric acid: Repeated or prolonged exposure to phosphoric acid mist can			
	lead to chronic eye irritation, severe skin irritation, or prolonged respiratory			
	tract issues.			
	5. Tannic acid: very larg	when applied to the abies	cause stomach irritation,	
	nausea, and vomiting. When applied to the skin: Tannic acid is possibly			
Duin cinlo	unsate when applied to skin that is tender or damaged.			
Principle	ramming present in alconolic deverages reacts with Folin - Dennis reagent and forms coloured solutions. The absorbance of these colored solutions are			
	Torms coloured solutions. The absorbance of these colored solutions are			
Apparetus /Instruments	1 General Glassware and apparatus (Pefer 2.0 at page no. 2)			
Apparatus / Instruments	2 Spectrophotometer De	while been with a working w	(10.2).	
	800 nm and band width 5 nm.			
Materials and Reagents	1 Alcoholic beverages			
Materials and Reagents	2 Sodium tungstate (Nas)	$WO_{1}(2H_{2}O)$		
	3. Phosphomolybdic acid			
	4. Phosphoric acid			
	5. Anhydrous Sodium carbonate			
	6. Tannic acid			
Preparation of reagents	1. Preparation of Folin - Dennis reagent - Prepare by adding 100 g Sodium			
	tungstate (Na ₂ WO ₄ , $2H_2O$). 20 g Phosphomolybdic acid and 50 mL			
	phosphoric acid to 750 mL water and reflux for 2 h and dilute to 1 L			
	2. Preparation of Sodium carbonate solution–Prepare by adding 35 g anhydrous			
	Sodium carbonate to 100 mL water at about 80 °C. Allow to cool overnight			
	and seed with few crystals of sodium carbonate. Filter.			
	3. Preparation of standard Tannic acid solution – Prepare fresh daily, by			
	dissolving 100 mg Tannic acid in 1000 mL water.			
	(1 mL = 0.1 mg of tannic acid).			
Method of Analysis	Preparation of standard cu	irve		
	1. Pipette 0.0, 0.2, 0.4, 0.	6, 0.8 and 1.0 mL of standard	tannic acid solution into	
	100 mL volumetric flasks containing 75 mL water.			
	2. Add 5 mL Folin - Dennis reagent and 10 mL sodium carbonate solution.			
	Make up to volume.			
	3. Mix well and after 30 min. determine absorbance of each standard using			
	reagent blank.			

	4. Plot absorbance against mg of tannic acid and use the graph for the		
	determination of concentration of tannin in wine.		
	Determination		
	5. Pipette 1 mL of wine into a 100 mL volumetric flask containing about 80 mL water.		
	6. Add 5 mL Folin-Dennis reagent and 10 mL sodium carbonate solution. Make up to volume.		
	7. Mix well and after 30 min, against reagent blank read the absorbance.		
	8. If the absorbance is beyond 0.8, dilute the solution 1:4 times and read.		
Calculation with units of	Obtain the mg of tannic acid using the standard curve and calculate to express		
expression	the value in g/L of wine.		
Reference	1. IS Standard – IS 3752:2005, Alcoholic Drinks, Methods of Test		
	2. IS Standard – IS 7585:1995, Wines, Methods of Analysis		
Approved by	Scientific Panel on Methods of Sampling and Analysis		

Ministry of Health and Family Welfare, Government of India					
Method No.	FSSAI 13.032:2021 Revision No. & Date 0.0				
Scope	Evaporation Method – This method is useful to determine the extracts present in				
	alcoholic beverages.				
Principle	Extracts are estimated by evaporating the known quantity of the sample of wine				
	on a steam bath				
Apparatus / Instruments	1. General Glassware and apparatus (Refer 2.0 at page no. 2).				
	2. Pipette, 50 mL.				
	3. Evaporating dishes, aluminum, flat bottom with lids, 75 mL capacity.				
	4. Oven- calibrated to maintain temperature of 100 ± 2 °C.				
	5. Steam bath.				
	6. Desiccators.				
	7. Electronic balance, 0.1 mg sensitivity				
Materials and Reagents	Alcoholic beverages				
Method of Analysis	1. Weigh, dried and cooled aluminum dish (W_1) .				
	2. Mix the wine sample well and draw 50 mL sample (dry wines) or 25 mL				
	sample (sweet wines) into the aluminum dish and evaporate on steam bath to				
	almost dryness.				
	3. Transfer the dish to an air oven maintained at 100 °C and dry for 4-5 h.				
	4. Remove the dish and cool in a desiccator and weigh to constant weight (W_2) .				
	5. Calculate the extract in g/L of wine.				
Calculation with units of	$[(W_2 - W_1) \times 1000]$				
expression	Extract $\left(\frac{1}{L}\right) = \frac{1}{Volume of sample}$				
	W_1 – Weight of empty aluminum dish				
	W_2 - Weight of aluminum dish with extract residue.				
Reference	1. IS Standard – IS 3752:2005, Alcoholic Drinks, Methods of Test				
	2. IS Standard – IS 7585:1995, Wines, Methods of Analysis				
Approved by	Scientific Panel on Methods of Sampling and Analysis				

	Determination of Sorbic Acid			
FOOD SAFETY AND STANDARDS				
AUTHORITY OF INDIA Inspiring Trust, Assuring Safe & Nutritious Food				
Ministry of Health and Family Welfam, Government of India				
Method No.	FSSAI 13.033:2021 Revision No. & Date 0.0			
Scope	Spectrophotometric method – This method is useful to determine sorbic acid			
Cartian	Diesent in alcononic beverages.			
Caution	Hydrochionic acid: Hydrochionic acid is a nazardous inquid which must be used with			
	care. The acid itself is corrosive, and concentrated forms release acidic mists that are			
	also dangerous. If the acid or mist come into contact with the skin, eyes, or internal			
Principle	Sorbic acid (2.4-bexadienoic acid) shows UV absorbance at 260 nm due to its			
Ттттре	inherent conjugation system present in the molecule. This absorbance is used for			
	instruction in the molecule. This absorbance is used for its quantification			
Apparatus / Instruments	1. General Glassware and apparatus (Refer 2.0 at page no. 2).			
	2. Cash Electric still.			
	3. UV Spectrophotometer			
Materials and Reagents	1. Alcoholic beverages.			
	2. Hydrochloric acid.			
	3. Potassium sorbate.			
Preparation of reagents	1. Hydrochloric acid - 0.1M. Dilute 8.2 mL HCl to 1 L with H ₂ O.			
	2. Sorbic acid standard solution - 1.0 mg/mL. Accurately weigh 1.340 g			
	potassium sorbate (equivalent to 1.000 g sorbic acid) in 1 L volumetric flask,			
	and dissolve and dilute to volume with H_2O . Solution is stable several days			
	when refrigerated.			
Method of analysis	Preparation of Standard Curve			
	mL volumetric flasks and dilute to volume with H-O			
	2 Pipet 2 mL of each solution into different 200 mL volumetric flasks and add			
	0.5 mL 0.1M HCl and dilute to volume with H ₂ O			
	3. Read A at 260 nm in 1 cm cell and plot A against concentration.			
	Determination.			
	4. Pipet 2 mL wine into Cash still.			
	5. Rinse in with $2-3$ mL H ₂ O.			
	6. Steam-distill into 200 mL volumetric flask containing 0.5 mL 0.1M HCl.			
	7. Collect ca 190 mL distillate; dilute to volume with H_2O .			
	8. Read A at 260 nm in 1 cm cell.			
Calculation with units of	Determine concentration from standard plot/ curve.			
expression				
Reference	1. Determination of sorbic acid AOAC, 974.08			
	2. Determination of sorbic acid in wine; Arthur Caputi, Masao Ueda, Bruno			
	Trombella; Journal of Association of Official Analytical Chemists, Volume			
	57, Issue 4, 1 July 1974, Pages 951–953			
	5. Conaborative Study of the Determination of Sorbic acid in wine; Arthur Caputi,			
	58 Issue 1 1 January 1975 Pages 132–135 https://doi.org/10.1003/isoog/59.1.122			
Approved by	So, issue 1, 1 January 1975, Pages 155–155, https://doi.org/10.1095/ja0ac/58.1.155			
Approvea by	scientific Panel on Methods of Sampling and Analysis			

	Determination of Reducing Sugar - Lane and Eynon (Fehling)			
	Method			
AUTHORITY OF INDIA Inspiring Trust, Assuring Safe & Nutritious Food				
Ministry of Health and Family Welfare, Government of India				
Method No.	FSSAI 13.034:2021 Revision No. & Date 0.0			
Scope	Lane and Eynon (Fehling) Method –This method is useful to determine reducing			
	sugars present in alcoholic beverages.			
Caution	1. Copper sulpate: Copper sulfate can cause severe eye irritation. Eating large			
	amounts of copper sulfate can lead to nausea, vomiting, and damage to body			
	tissues, blood cells, the liver, and kidneys.			
	2. Support acid. Concentrated surfuric acid is extremely corrosive and can			
	bacques it not only causes chamical burns, but also secondary thermal burns			
	as a result of dehydration. This dangerous chemical is capable of corroding			
	skin paper metals and even stone in some cases. If sulfuric acid makes			
	direct contact with the eves it can cause permanent blindness. If ingested			
	this chemical may cause internal burns irreversible organ damage and			
	nossibly death			
	3. Potassium sodium tartrate: May cause irritation to skin eyes and respiratory			
	tract. Inhalation: may cause irritation to the respiratory tract.			
	4. Sodium hydroxide: Sodium hydroxide is strongly irritating and corrosive. It			
	can cause severe burns and permanent damage to any tissue that it comes in			
	contact with. Sodium hydroxide can cause hydrolysis of proteins, and hence			
	can cause burns in the eyes which may lead to permanent eye damage.			
	5. Lead acetate: may be fatal if swallowed, inhaled or absorbed through skin.			
	Suspect cancer hazard. May cause cancer. Risk of cancer depends on level			
	and duration of exposure. Causes irritation to skin, eyes and respiratory tract.			
	and reproductive system			
	6 Acetic acid: Acetic acid can be a hazardous chemical if not used in a safe and			
	appropriate manner. This liquid is highly corrosive to the skin and eves and			
	because of this must be handled with extreme care. Acetic acid can also be			
	damaging to the internal organs if ingested or in the case of vanor inhalation			
	7. Disodium hydrogen phosphate: Causes mild skin irritation: Causes even			
	irritation.			
	8. Benzoic acid: Immediately or shortly after exposure to benzoic acid the			
	following health effects can occur. Eve damage Irritation of the skin			
	resulting in a rash, redness, and/or a burning feeling. Irritation to the nose.			
	throat and lungs if inhaled, which may cause coughing, wheezing and/or			
	shortness of breath.			
Principle	Known quantity of Fehling (Soxhlet) solution titrated with dextrose solution and			
	used quantity is determined. Known quantity of Fehling solution is taken and			
	known quantity of clarified wine is added and titrated with dextrose solution and			
	used quantity is determined. The difference in the quantities of dextrose used			
	will provide the reducing sugar present in wine.			
Apparatus / Instruments	General Glassware and apparatus (Refer 2.0 at page no. 2).			
Materials and Reagents	1. Alcoholic beverages			
	2. Copper sulphate			
	3. Sulphuric acid (conc. H ₂ SO ₄)			

Calculation with units of	Calculate the reducing sugar from the standard tables.			
	 Bring it to boil and titrate with 0.5% invert sugar, with methylene blue indicator to a brick red end point. 			
Method of Analysis	1. Pipette 20 mL of the clarified wine into an Erlen-meyer flask containing 25 mL of Soxhlet reagent			
	of disodium hydrogen phosphate in a beaker.			
	drops of glacial acetic acid. 4. Make the volume to 100 mL with distilled water. Filter this mixture into 2 a			
	3. To this add 5 mL of lead acetate solution, enough activated charcoal and 2			
	2. Exactly neutralize with sodium hydroxide calculating the acidity and evaporate to 50 mL			
	1. Take 100 mL of wine sample in a porcelain dish.			
Sample Preparation	De-alcoholization and Decolourization of Wine Sample			
	sugar till faint blue and then add dropwise until the solution is reddish in colour			
	indicator and titrate the solution while still hot with standard 0.5% invert			
	3 min (use glass beads to prevent bumping). Add 5 drops of methylene blue			
	9. Pipette 25 mL of Soxhlet reagent into a 250 mL flask. Add 10 mL of 0.5% standard invert sugar solution, bring it to boil in 3 min and keep it boiling for			
	Preparation of control			
	 8. Sodium Hydroxide – 1 normal solution. 			
	titration. Note the concentration of anhydrous dextrose in the solution as mg			
	will be required to reduce all the copper in the Fehling solution taken for			
	(6) to such a concentration that more than 15 mL but less than 50 mL of it			
	prepared daily. 7. Stondard doutroop solution Dilute known encount of doutroop stark as better			
	shaking. Make up the volume to the mark with water. This solution is			
	6. Stock solution of dextrose – Anhydrous dextrose (10 g) dissolved in water in a 1 L graduated flask Benzoic acid (2.5 g) is added and dissolved while			
	Standard invert sugar solution			
	water.			
	4. Lead acetate solution (Saturated and neutral).			
	3. Mix equal amounts of solution A and solution B.			
	2 days. Filter the solution.			
	2. Solution B - Dissolve 1/3 g of Rochelle salt (Potassium sodium tartarate) and 50 g of sodium hydroxide dilute to 500 mL and allow the solution to stand for			
	conc. H_2SO_4 and dilute to 500 mL. Filter the solution.			
operation of reacting	1. Solution A - Dissolve 34.639 g of copper sulphate in water, add 0.5 mL of			
Prenaration of reagents	11. Benzoic acid Soxhlet solution			
	10. Anhydrous dextrose			
	9. Methylene blue			
	 7. Glacial acetic acid 8. Disodium hydrogen phosphate (Na₂HPO₄) 			
	6. Lead acetate 7. Glacial acetic acid			
	5. Sodium hydroxide			
	4. Rochelle salt (Potassium sodium tartarate)			

Reference	IS Standard – IS 7585:1995, Wines, Methods of Analysis
Approved by	Scientific Panel on Methods of Sampling and Analysis

	Determination of Reducing Sugar – Dinitrosalicylic Acid Method			
ISSAT FOOD SAFETY AND STANDARDS				
AUTHORITY OF INDIA Inspiring Trust, Assuring Safe & Nutritious Food				
Ministry of Health and Family Welfare, Government of India	ESSAL 12 025-2021	Derivion No. 9 D-4-		
Method No.	FSSAI 13.035:2021	Revision No. & Date	0.0	
Scope	Reducing sugars (contain	free carbonyl group) have the	e property to reduce many	
	of the reagents. Dinitrosal	licylic acid (DNS) is one sucl	h reagent. This method is	
	useful to determine red	ucing sugars present in alc	coholic beverages using	
	dinitrosalicylic acid.			
Caution	1. Potassium sodium tartarate: May cause irritation to skin, eyes, and respiratory			
	tract. Inhalation: may cause irritation to the respiratory tract.			
	2. Sodium hydroxide: Sodium hydroxide is strongly irritating and corrosive. It			
	can cause severe burns	and permanent damage to an	ny tissue that it comes in	
	contact with. Sodium hydroxide can cause hydrolysis of proteins, and hence			
	can cause burns in the eyes which may lead to permanent eye damage.			
	3. 3,5-Dinitrosalicylic acid: Causes eye burns. Harmful if absorbed through the			
	skin. Causes skin burns. Harmful if swallowed. Causes gastrointestinal tract			
	burns. Harmful if inhaled. Causes chemical burns to the respiratory tract.			
	Chronic exposure may cause effects similar to those of acute exposure.			
	4. Phenol: Phenol can pose a severe health hazard and should be handled with			
	extreme caution. Phenol is highly corrosive to the skin and readily absorbed through it whereupon it can affect the central pervous system and cause			
	damage to the liver and kidneys. It is also a mutagen, and there is some			
	evidence that phenol may be a reproductive hazard. When heated phenol will			
	produce flammable vapors that are highly toxic (at just a few parts per			
	million) and explosive (at concentrations of 3% to 10% in air).			
	5. Sodium sulphite: Dus	t or mist may cause skin i	rritation from prolonged	
	contact. Solutions will cause skin irritation. Inhalation of dust may cause			
	coughing and sneezing. Ingestion may result in irritation of the mouth and			
	gastrointestinal tract			
Principle	When alkaline solution of	f 3,5-dinitrosalicylic acid rea	acts with reducing sugars	
	(e.g. Glucose, lactose.), it is converted into 3-amino-5-nitrosalicylic acid with			
	orange color.			
Apparatus	1. General Glassware and apparatus (Refer 2.0 at page no. 2)			
	2. Spectrophotometer UV-Visible (variable wavelength)			
Matarials and use souts	3. Amber color bottle			
Materials and reagents	1. Alconolic beverages			
	2. Sodium potassium tartrate			
	3. 5,5-Dimuosancync aciu 4. Sodium hydroxide			
	5 Phenol – Crystalline			
	6. Sodium sulphite			
	7. Glucose (Standard)			
Preparation of reagents	1. Sodium hydroxide (1%): Dissolve sodium hydroxide(1 g) in distilled water			
	(100 mL)			
	2. Dinitrosalicyclic acid reagent (DNS Reagent): Dissolve by stirring 1 g			
	dinitrolsalicyclic acid, 200 mg crystalline phenol and 50 mg sodium sulphite			
	in 100 mL 1% NaOH. Store at 4 °C in amber bottle. Since, the reagent			
	deteriorates due to sodium sulphite, if long storage is required, sodium			
	sulphite may be added at the time of use.			
---------------------------	---	--	--	
	3. Rochelle salt solution (Potassium sodium tartrate - 40%): Dissolve potassium			
	sodium tartrate (40 g) in distilled water (100 mL).			
Sample Preparation	1. Stock standard Glucose solution: Glucose solutions of different			
	concentrations are obtained by dilutions from a stock solution of 2 g/L.			
	2. Working standard Glucose solution: Stock standard Glucose solution (10 mL)			
	is diluted to 100 mL.			
Method of Analysis	1. Take 100 mL of alcoholic beverage and remove alcohol completely by			
	distillation on water bath at 80 °C. Note down the weight (A mg) of the			
	residue			
	2. Weigh 100 mg of the sample (residue) and extract the sugars with hot 80%			
	ethanol twice (5 mL each time)			
	3. Collect the supernatant and evaporate it by keeping it on a water bath at 80 $^{\circ}C$			
	4. Add 10 mL water and dissolve the sugars			
	5. Pipette out 0.5 to 3 mL of the extract in test tubes and equalize the volume to			
	3 mL with water in all the tubes.			
	6. Add 3 mL of DNS reagent.			
	7. Heat the contents in a boiling water bath for 5 min.			
	8. When the contents of the tubes are still warm, add 1mL of 40% Rochelle salt solution.			
	9. Cool to room temperature make up to 7 mL with distilled water.			
	10. Read the intensity of dark red colour at 510 nm.			
	11. Run a series of standards using glucose (0 to 500 µg) and plot a calibration			
	graph.			
	12. Calculate the reduced sugars (B µg) using calibration curve present in C mL			
	of residue solution.			
Calculation with units of	1. Reducing sugars present in 10 mL of residue solution (reducing sugars			
expression	present in 100 mg of the residue sample) = $10 \times B/C$			
	2. Reducing sugars present in100 mL of alcoholic beverage (total residue i.e.,			
	$A mg = \frac{A \times 10 \times B}{100 \times C}$ (in micro grams)			
	A – Weight of residue from 100 mL of beverage.			
	B – Weight of reduced sugars from C mL of residue solution.			
Reference	Miller, G. (1959). Use of Dinitrosalicylic Acid Reagent for Determination of			
	Reducing Sugar. Analytical Chemistry 31, pp. 426-428			
Approved by	Scientific Panel on Methods of Sampling and Analysis			

	Determination of Individual Sugars - HPLC		
FOOD SAFETY AND STANDARDS			
AUTHORITY OF INDIA Inspiring Trust, Assuring Safe & Nutritious Food			
Method No.	FSSAI 13.036:2021	Revision No. & Date	0.0
Scope	Determination of indiv	idual sugars in alcoholic	beverages using High
	Performance Liquid Chron	matography with refractive inc	lex detector.
Principle	Retention times of indivi	idual sugars in HPLC are dif	fferent. All sugars show
	refractive index.		
Apparatus / Instruments	1. General Glassware and	l apparatus (Refer 2.0 at page r	10. 2).
	2. HPLC with RI Detector and temperature oven.		
	3. Hi-Plex H column (7.7	× 300 mm).	
Materials and Reagents	1. Alcoholic beverages		
	2. Ethanol		
	3. Glucose (Extra Pure)		
	4. Fructose (analytical real	agent)	
	6 Distilled deionized wat	gent) ter	
Preparation of reagents	1. Stock Standard sugar s	olutions: Prepare 5% stock sta	ndard sugar solutions.
	2. Working standard suga	ar solution: Dilute the stock st	tandard sugar solution to
	working standard sugar	r solutions (1%).	C
Samples Preparation	1. Extract sugars from Alcoholic beverages using methanol (80%) in ethanol		
	for 90 min.	0 0	
Method of Analysis	 Dilute working standa fructose, and sucrose calibration curves. Inject these solutions to 3. Note the retention time Prepare calibration cu detector response (y-ax 	ard sugar solutions to Standa from 0.03% (w/w) to 0.2% (to HPLC under the following co of each standard sugar. urves using the concentration (is).	rd solutions of glucose, (w/w) for preparation of onditions. n of sugars (x-axis) vs
	Note: The limit of detection by the HPLC-RI method 109; and sucrose 0.002, 94	on (%, w/w) and recovery (%) were fructose 0.001, 89.4–10 4.2–95.1.) of the individual sugars 06; glucose 0.002, 92.4–
	 5. Inject test samples of s the preparation of calib 6. Note detector response 	sugar solutions to HPLC as pe oration curves. s for each peak.	r the conditions used for
	7. Make triplicate injecti peak. HPLC conditions	ons and calculate average de	tector response for each
	1. Mobile phase: Distilled	deionized water	
	3 Sample injection volum	$res \cdot 10 \text{ mL}$	
	4. Column temperature :	: 35 °C	
Calculation with units of	Calculate quantity of each	sugar using detector response	(average of triplicate) of
expression	the respective peak and ca	libration curve.	- •

Reference	Improvement in Analytical Methods for Determination of Sugars in Fermented
	Alcoholic Beverages; Ayalew Debebe, Shibru Temesgen, Mesfin Redi-Abshiro,
	Bhagwan Singh Chandravanshi ,and Estifanos Ele; Journal of Analytical
	Methods in Chemistry; Volume 2018, Article ID 4010298, 10 pages;
	https://doi.org/10.1155/2018/4010298
Approved by	Scientific Panel on Methods of Sampling and Analysis

	Determination of Total Sugar – Fehling Solution Method		
FOOD SAFETY AND STANDARDS			
AUTHORITY OF INDIA Inspiring Trust, Assuring Safe & Nutritious Food			
Ministry of Health and Family Welfare, Government of India	ESSAL 12 027-2021	Devision No. 8- Data	0.0
Niethod No.	The presence of odded and	Kevision No. & Date	0.0
Scope	ofter inversion by conner	reduction methods	mining sugars before and
Caution	1 Copper sulphoto: Copper-	reduction methods.	a invitation Eating large
Caution	1. Copper suppate: Copp	for suitate can cause severe ey	e irritation. Eating large
	tissues blood calls the	liver and kidneys	ing, and damage to body
	2 Uvdraablaria aaid. Uv	dreshlaria asid is a hazarday	a liquid which must be
	2. Hydrocillonic acid. Hy	dital f is corresive and co	neantrated forms release
	acidic mists that are also	the dangerous. If the acid or min	st come into contact with
	the skin eyes or inter	al organs, the damage can be	irreversible or even fatal
	in severe cases	iai organis, the damage can be	inteversible of even fatar
	3 Potassium sodium tarti	rate: May cause irritation to sk	in eves and respiratory
	tract Inhalation may c	ause irritation to the respirator	v tract
	4. Sodium hydroxide: So	dium hydroxide is strongly ir	ritating and corrosive. It
	can cause severe burns	s and permanent damage to an	iv tissue that it comes in
	contact with. Sodium I	nydroxide can cause hydrolysi	s of proteins, and hence
	can cause burns in the	eyes which may lead to perman	nent eye damage.
	5. Lead acetate: may be	fatal if swallowed, inhaled or	r absorbed through skin.
	Suspect cancer hazard. May cause cancer. Risk of cancer depends on level		
	and duration of exposure. Causes irritation to skin, eyes and respiratory tract.		
	Neurotoxin. Affects the gum tissue, central nervous system, kidneys, blood		
	and reproductive system	n.	
	6. Sodium oxalate: Like	e several other oxalates, sodi	um oxalate is toxic to
	humans. It can cause b	ourning pain in the mouth, thr	oat and stomach, bloody
	vomiting, headache, m	uscle cramps, cramps and co	nvulsions, drop in blood
	pressure, heart failure,	shock, coma, and possible dea	th.
	7. Potassium oxalate: Ha	rmful if swallowed. Causes e	ye, skin, and respiratory
Dringinla	Eabling solution is standa	rdized using standard daytrood	solution First reducing
Frincipie	sugars are estimated in t	the alcoholic beverage. Later	· Alcoholic boverage is
	inverted and total sugars a	re estimated	, Alcoholic beverage is
Annaratus / Instruments	1 General Glassware and	apparatus (Refer 2.0 at page r	10.2)
rppuratus / mistruments	2. Amber coloured bottle	s.	10. 2).
Materials and Reagents	1. Alcoholic beverages	-	
	2. Copper sulphate (CuSC	$D_4.5H_2O)$	
	3. Rochelle salt (potassium	m sodium tartrate) (KNaC ₄ H ₄ C	$D_{6.}4H_{2}O$).
	4. Hydrochloric acid		
	5. Sodium hydroxide		
	6. Lead acetate		
	7. Potassium or sodium o	xalate	
	8. Phenolphthalein indica	tor	
Preparation of reagents	1. Fehling A: Dissolve	69.28 g copper sulphate (C	$uSO_4.5H_2O$) in distilled
	water. Dilute to 1000	mL. Filter and store in amber of	coloured bottle.
	2. Fehling B: Dissolve 3	346 g Rochelle salt (potassiun	n sodium tartrate) (K Na
	$C_4H_4O_6.4H_2O$) and 10	00 g NaOH in distilled water. I	Dilute to 1000 mL. Filter
	and store in amber col	oured bottle.	

	3. Saturated neutral Lead acetate solution.				
Sample Preparation	1. Transfer tes	st sampl	le representing about 2-	2.5 g sugar to 200 mL volun	netric
	flask, dilute	to abou	ıt 100 mL.		
	2. Add excess	of satu	rated neutral Lead aceta	te solution (about 2 mL is us	sually
	enough).				
	3. Mix, dilute to volume and filter, discarding the first few mL filtrate.				
	4. Add dry Po	otassiun	n or Sodium Oxalate t	o precipitate excess lead use	ed in
	clarification	i, mix a	nd filter, discarding the f	first few mL filtrate.	1 0
	Note: Use of	Note: Use of Polassium remocyanide and Zinc acetate is preferable instead of L and acetate and Sodium evaluate due to sofety issues			ad of
	Lead acetate an		um oxalate, due to safety	/ Issues.	
Method of Analysis	Standardization of Fehling's solution				
	1. Flepale stal	e of de	vtrose solution required	to reduce all the copper in 10	0 mI
	of Fehling	solution) corresponding to the	standard dextrose solution ()	Refer
	table below).	i) conceptioning to the	standard dextrose solution (
	2. Pipet 10 ml	, of Fel	hling's solution into a 3	00 mL of conical flask and r	un in
	from the bu	rette al	most the whole of the s	tandard dextrose solution req	uired
	to effect re	duction	n of all the copper, so	that more than one mL wi	ll be
	required late	er to con	mplete the titration.		
	3. Heat the fla	sk conta	aining mixture over wire	e gauze. Gently boil the conten	nts of
	the flask for	: 2 min.			-
	4. At the end of	of two n	ninutes of boiling add w	ithout interrupting boiling, on	e mL
	of methylene blue indicator solution.				
	5. While the contents of the flask begin to boil, begin to add standard dextrose solution (one or two drops at a time) from the burette till blue color of				
	indicator di		s wo utops at a time) if	on the bulette thi blue colo	01 01
	6 The titration	sappear n should	s. d be completed within (one minute so that the conter	nts of
	the flask bo	il togetł	her for 3 min without int	erpretation	11.5 01
	7. Note the tit	e (that	is total volume in mL of	std. dextrose solution used for	or the
	reduction of	f all the	copper in 10 mL of Feh	ling's solution.	
	8. Multiply th	e titre	(obtained by direct tit	ration) by the number of m	ng of
	anhydrous	dextrose	e in one millilitre of sta	andard dextrose solution to o	btain
	the dextrose	e factor.			
	9. Compare th	is facto	r with the dextrose facto	r and determine correction.	
	Titure	Dextro	ose factors for 10 mL of	Fehling's Solution	
	Thre ((mL)	Dextrose factor	mL of solution (mg)	
	15		/0 1	327	
	1.	, j	49.2	307	
	17	, 1	49.3	289	
	18	3	49.3	274	
	19)	49.4	260	
	20)	49.5	247.4	
	21	-	49.5	235.8	
	22	2	49.6	225.5	
	23	3	49.7	216.1	
	24	ŀ	49.8	207.4	
	25	5	49.8	199.3	

			-
	26	49.9	191.8
	27	49.9	184.9
	28	50.0	178.5
	29	50.0	172.5
	30	50.1	167.0
	31	50.2	161.8
	32	50.2	156.9
	33	50.3	152.4
	34	50.3	148.0
	35	50.4	148.9
	36	50.4	140.0
	37	50.5	136.4
	38	50.5	132.9
	39	50.6	129.6
	40	50.6	126.5
	41	50.7	123.6
	42	50.7	120.8
	43	50.8	118.1
	44	50.8	115.5
	45	50.9	113.0
	46	50.9	110.6
	47	51.0	108.4
	48	51.0	106.2
	49	51.0	104.1
	50	51.1	102.2
	Milligrams of Fehlings solutio	anhydrous dextrose con n	orresponding to 10 mL of
	 a) Take 25 mL filtrate or aliquot containing (if possible) 50 – 200 mg reducing sugars and titrate with mixed Fehling A and B solution using Lane and Eynon Volumetric method. 		
	b) For inversion at room temperature, transfer 50 mL aliquot clarified and de- leaded solution to a 100 mL volumetric flask, add 10 mL HCl (1+ 1) and let stand at room temperature for 24 h. (For immediate inversion, the sample		
	with HCl can be heated at 70 °C for 1 h).		
	c) Neutralise exactly with conc. NaOH solution using phenolphthalein indicator		
	and dilute to 100 m	L. Titrate against mixe	d Fehling A and B solution (25 m
	of Fehling's Solution	on can be considered for	or the purpose) and determine tota
	sugar as invert sug	ar (Calculate added su	igar by deducting reducing sugar
	from total sugars).		
Calculation with units of	Reducing and total red	ucing sugar can be calc	ulated as below:
expression			
	Reducing sugar (%)	.	
	$\frac{\text{(mg of invert sugar \times volume made up } \times 100)}{\text{(mg of invert sugar } \times 100)}$		
	$- TR \times Weight of sample \times 1000$		
	1 I otal reducing sugar (%	<i>(</i> 0 <i>)</i>	

	mg of invert sugar \times final volume made up \times original volume \times 100		
	$- \frac{1}{\text{TR} \times \text{Weight of sample} \times \text{aliquot taken for inversion} \times 1000}$		
	Total sugar (as sucrose) (%) = (Total reducing sugar – Reducing sugar) × 0.95 + Reducing sugar		
	Added sugar = Total sugars – Reducing sugars		
Reference	1. Table 2: IS 6287:1985, Methods for sampling and analysis for sugar confectionery, Pg.11		
	2. AOAC 17th edn, 2000 Official Method 925.35 Sucrose in Fruits and Fruit		
	Products read with AOAC Official method 923.09 Lane and Eynon general volumetric method		
	3. AOAC 984.17: 'Method for the determination of Sugars in foods', Jr. Agri. and Food Chemistry, 19(3):551-54, (1971) (Modified) Brobst, K.M.		
	4. Gas-Liquid Chromatography of Trimethylsilyl Derivatives, Methods in		
	Carbohydrate Chemistry, 6:3-8, Academic Press, New York, NY, (1972)		
	(Modified)		
Approved by	Scientific Panel on Methods of Sampling and Analysis		

	Determination of Total Sugar –Anthrone Method		
ISSAT FOOD SAFETY AND STANDARDS			
AUTHORITY OF INDIA Inspiring Trust, Assuring Safe & Nutritious Food			
Ministry of Health and Family Welfare, Government of India			
Method No.	FSSAI 13.038:2021 Revision No. & Date 0.0		
Scope	Anthrone method – Total sugars in alcoholic beverages are determined using		
	anthrone method.		
Caution	1. Hydrochloric acid: Hydrochloric acid is a hazardous liquid which must be		
	used with care. The acid itself is corrosive, and concentrated forms		
	release acidic mists that are also dangerous. If the acid or mist come into		
	contact with the skin, eyes, or internal organs, the damage can be irreversible		
	or even fatal in severe cases.		
	2. Sodium carbonate: Eye contact can cause permanent corneal injury and		
	possible burns. Avoid ingestion or inhalation of dust. Due to these potential		
	nazards, sodium carbonate snould be nandied with care.		
	5. Support actual Concentrated support actual is extremely corrosive and can cause serious burns when not handled properly. This chemical is unique		
	because it not only causes chemical burns, but also secondary thermal burns		
	as a result of dehydration. This dangerous chemical is capable of corroding		
	skin, paper, metals, and even stone in some cases. If sulphuric acid makes		
	direct contact with the eves it can cause permanent blindness. If ingested		
	this chemical may cause internal burns, irreversible organ damage, and		
	possibly death.		
	4. Anthrone: Causes skin irritation. Causes serious eye irritation. May cause		
	respiratory irritation.		
	5. Toluene: Toluene is a highly flammable liquid and it can cause mild damage		
	to the skin and the eyes. However, the most-common hazard associated with		
	this chemical is inhalation. Products containing toluene can produce		
	dangerous fumes which can cause nausea, headaches, unconsciousness, and		
	even death if inhaled.		
Principle	Carbohydrates are first hydrolysed into simple sugars using dilute hydrochloric		
	acid. In hot acidic medium glucose is dehydrated to hydroxymethyl furfural.		
	This compound forms with anthrone a green colored product with an absorption		
Approximation (Instruments	Inaximum at 050 mm.		
Apparatus/ Instruments	 Ocheral Olasswale and apparatus (Refer 2.0 at page 10. 2). Spectrophotometer UV-Visible (variable wavelength) 		
Materials and Reagents	1 Alcoholic beverages		
Materials and Reagents	2. Hydrochloric acid (36%)		
	3. Sodium carbonate		
	4. Anthrone		
	5. Sulphuric acid		
	6. Standard Glucose		
	7. Toluene		
Preparation of reagents	1. Hydrochloric acid (2.5 N): Dilute Hydrochloric acid (21.5 mL) to 100 mL.		
	2. Anthrone reagent: Dissolve 200 mg anthrone in 100 mL of ice cold 95%		
	Sulphuric acid. Prepare fresh before use.		
	3. Stock Standard Glucose solution: Dissolve 100 mg of standard glucose in 100		
	mL water.		
	4. working standard Glucose solution: 10 mL of stock Standard Glucose		

	solution diluted to 100 mL with distilled water. Store refrigerated after adding
	a few drops of toluene.
Sample Preparation	1. Take 100 mL of alcoholic beverage and remove alcohol completely by
	distillation on water bath at 80 °C. Note down the weight (A mg) of the
	residue
	2. Weigh 100 mg of the residue into a boiling tube.
	3. Hydrolyze by keeping it in a boiling water bath for three hours with 5 mL of
	2.5 N HCI and cool to room temperature.
	4. Neutralize it with solid sodium carbonate until the effervescence ceases.
	5. Make up the volume to 100 mL and centrifuge.
	6. Collect the supernatant and take 0.5 and 1 mL for analysis as test sample.
Method of analysis	1. Prepare the standards by taking 0, 0.2, 0.4, 0.6, 0.8 and 1 mL of the working
	standard glucose solution. 'O' serves as blank.
	2. Make up the volume to 1 mL in all the tubes including the sample tubes by
	adding distilled water.
	3. Then add 4 mL of anthrone reagent.
	4. Heat for eight minutes in a boiling water bath.
	5. Cool rapidly to room temperature and make up to 5 mL with distilled water
	 Read the green to dark green colour at 630 nm. Draw a standard graph by platting concentration of the standard on the Y axis.
	<i>i</i> . Draw a standard graph by plotting concentration of the standard on the X-axis versus absorbance on the Y-axis.
	8. From the graph calculate the amount of carbohydrate present in the sample
	tube.
Calculation with units of	Amount of carbohydrate present in 100 mg of the sample residue (B)
expression	= (mg of glucose \div Volume of test sample) \times 100
	Amount of carbohydrate present in 100 mL of the alcoholic beverage
	$B \times A$
	- 100
Reference	Hedge, J E and Hofreiter, B T (1962) In: Carbohydrate Chemistry 17 (Eds
	Whistler R L and Be Miller, J N) Academic Press New York
Approved by	Scientific Panel on Methods of Sampling and Analysis

1	Determination of Carbonation (GV)		
FOOD SAFETY AND STANDARDS			
AUTHORITY OF INDIA Inspiring Trust, Assuring Safe & Nutritious Food			
Ministry of Health and Family Welfare, Government of India	ESSAL 12 020:2021 Devicien No. 8 Data 0.0		
Nietnod No.	F55A1 15.059:2021 Revision No. & Date 0.0		
Scope	In case of carbonated RID low alcoholic beverages, they shall be carbonated		
	with carbon dioxide conforming to Grade 2 of IS 30/ to a pressure in accordance		
	with their character. However, the carbonated RTD low alcoholic beverages		
	shall have a minimum of one volume of carbon dioxide. The gas volume is the		
	amount of carbon dioxide the water will absorb at the normal atmospheric pressure		
	at 15,56 T.		
Principle	Amount of carbonation is determined using the pressure gauge.		
Apparatus / Instruments	1. General Glassware and apparatus (Refer 2.0 at page no. 2).		
	2. The apparatus consists of a pressure gauge having a hollow spike with holes		
	in its side. The bottle is inserted from the side into the slot provided in the		
	neck of the carbon dioxide tester and is secured in place by tightening with a		
	threaded system, the pressure gauge is inserted until the needle point touches		
	the crown cork. There is a snift valve on the gauge stem, which is kept closed		
	until the needlepoint of the pressure gauge is forced through the crown cork.		
	The reading is noted on the gauge.		
Materials and Reagents	Alcoholic beverages		
Method of Analysis	1. Clamp the bottle in the frame of the gas volume tester.		
	2. Pierce the crown cork but do not shake the bottle. Sniff off the top gas		
	quickly until the gauge reading drops to zero.		
	3. Make certain to close the valve the instant the needle touches zero in the		
	pressure gauge, Shake the bottle vigorously until the gauge gives a reading		
	that additional shaking does not change.		
	4. Record the pressure.		
	5. Note the temperature and record it.		
Calculation with units of	Obtain the volume of gas from Table 2 of IS 2346.		
expression			
Reference	1. IS: 15588 (2005), Alcoholic drinks - Low alcoholic beverages.		
	2. IS: 2346 Carbonated beverages specification		
Approved by	Scientific Panel on Methods of Sampling and Analysis		

	Determination of pH		
FOOD SAFETY AND STANDARDS			
AUTHORITY OF INDIA Inspining Trust, Assuring Safe & Nutritious Food			
Ministry of Health and Family Welfare, Government of India			
Method No.	FSSAI 13.040:2021	Revision No. & Date	0.0
Scope	The pH is closely related to the concentration of hydrogen ions (H+) present in alcoholic beverages (the pH characteristics of alcoholic beverages depend on various parameters, such as the quality of the reducing water, the duration of maturation in casks, the nature of the aromatic raw materials, and of any additives). Due to the presence of ethyl alcohol in alcoholic beverages, the pH should be		
	measured according to spe	ecific procedures.	
Caution	 Potassium tartrate mon damaging to the health bring irritant and / or l irregularities in heart pressure. The acid itse man. Gastrointestinal diarrhea, abdominal p and/or kidney failure. some persons. This ma some persons and pro- lesions or abrasions. E ensure that any externa can cause respiratory in irritation can cause furt Thymol: Ingestion ma abdominal pain, vomi hyperactivity (e.g., talk Potassium hydrogen p irritation. Decahydrate Borax: B skin or eye contact, in of borax-based pestici- including vomiting, e respiratory effects. 	nobasic: Accidental ingestion n of the individual. Excessive a harmful effects. Potassium cau rhythm, heart block and an lf have all produced serious p symptoms are marked and in pain and thirst followed by This material can cause eye aterial can cause inflammation duce health damage following Examine the skin prior to the al damage is suitably protected rritation in some persons. The ther lung damage. ay cause burning pain in the ting, dizziness, convulsions, cativeness), cardiac and respirar obthalate: May cause eye, skin forax can be irritating when e mhalation or ingestion. Poison ides can result in acute to eye irritation, nausea, skin r	of the material may be amounts or overuse may uses a slow, weak pulse, eventual fall in blood oisonings or fatalities in aclude violent vomiting, cardiovascular collapse irritation and damage in of the skin on contact in g entry through wounds, use of the material and l. If inhaled, the material body's response to such the oesophagus, nausea, coma, cyanosis, central tory arrest. in, and respiratory tract exposure occurs through reports suggest misuse xicity, with symptoms ash, oral irritation and
Principle	Principle applied to alcol media 1. The traditional pH ra	nolic beverages - The measur	ement of pH in organic 4 is determined by the
	 dissociation of water. If or the water is replaced i.e. the latter's ionic provide the water. This results in the ions (i.e. which are not possible to carry out able can be made. In addition However, from a water be used, i.e. expressed Under these operating solution to be measure 	If the water content of a solut d by another solvent, it is the o oduct which is taken into acco- otally different concentration of chemically bound). In non- solute measurements of pH. On n, partially aqueous media are of content of at least 5%, the cla in terms of absolute values and conditions, at the interface bet of a phase separation is often f	ion is gradually reduced dissociation equilibrium, unt instead of that of the ranges for the "free" H+ aqueous media, it is not ly relative measurements often low-ion. ssic definition of pH can d not just relative values. ween the electrolyte and formed which makes the

	signal unstable. There is also a risk of precipitation at the membrane level. The same problem is also encountered when using concentrated solutions of
	KCl as the reference electrolyte
	3 Specific measurement conditions - To avoid the problems described above
	the basic requirement is that the electrolyte solution to measure and form a
	homogeneous solution without phase separation or precipitation. This
	condition can be met using lithium chloride (LiCl) in an ethanol medium. A
	second condition is the use of an electrode with cylindrical membrane and a
	ground-in diaphragm, to ensure optimum contact between the reference
	electrolyte and the solution to be measured.
Apparatus / Instruments	1. General Glassware and apparatus (Refer 2.0 at page no. 2).
TT	2. pH meter - pH meter calibrated in pH units, enabling measurements to a
	minimum accuracy of: ± 0.01 pH i.e. ± 1 mV. The instrument is preferably to
	be equipped with an electronic device for the automatic compensation of the
	temperature to a minimum accuracy of ± 0.5 °C. The pH meter should be
	used in a place sheltered from pollutants, acid or alkaline vapours in
	particular, hydrogen sulphide (H_2S) and ammonia (NH_3).
	3. Electrodes - Combined electrode: The electrodes marketed for this specific
	purpose are generally of the type-combined electrode. The useful part of the
	electrode consists of a cylindrical membrane and a ground in diaphragm
	made of Teflon. The reference electrolyte is an ethanol solution at 95% vol.
	of lithium chloride (LiCl) to 1 mol/L. Its alcoholic strength should be close to
	that of the alcoholic beverage to be analysed. Immerse the electrode tip when
	not used continuously, in an ethanol solution of lithium chloride to 1 mol/1,
	unless otherwise specified by the manufacturer of the electrode.
	4. Stirring device: magnetic stirrer and bar, for example.
	5. Cleaning supplies: Joseph paper, etc.
Materials and Reagents	1. Alcoholic beverages
	2. Defonised or distilled water-Free from carbon dioxide and metal ions, with a $1 - \frac{1}{1 $
	maximum conductivity of 200 μ S/m(<i>a</i>) 20 °C
	3. Potassium acid tartrate
	4. Inyinoi 5. Detective hydrogen altholete
	5. Potassium divideogen phoenhote
	7. Dipotassium phosphate
	8 Decahydrated Boray (B.O.Na, 10 H.O)
	9. Standard buffer solution: With reference to standard NET 01012 "nH
	measurement - standard solutions for calibration of a pH meter"
	(i) pH buffer solution: 3.57 at 20 °C
	(i) pH buffer solution: $4.00 \text{ at } 20 \text{ °C}$
	(iii) pH buffer solution: 6.88 at 20 °C
	(iv) pH buffer solution: 9.22 at 20 °C
Preparation of reagents	1. pH buffer solution - 3.57 at 20 °C: Saturated solution of potassium acid
	tartrate. Solution containing at least 5.7 g/l of potassium acid tartrate (HOOC
	$C_2H_4O_2COOK$) at 20 °C. This solution can be kept for two months in the
	presence of 0.1 g of thymol per 200 mL. (3.57 at 20 °C); (3.56 at 25 °C);
	(3.55 at 30 °C).
	2. pH buffer solution - 4.00 at 20 °C: 0.05 M solution of potassium hydrogen
	phthalate. Solution containing 10.211 g/1 of potassium hydrogen phthalate at
	20 °C (maximum storage time: 2 months). (3.999 at 15 °C); (4.003 at 20 °C);

	(4.008 at 25 °C); (4.015 at 30 °C).
	3. pH buffer solution - 6.88 at 20 °C: Solution containing Potassium dihydrogen
	phosphate (KH ₂ PO ₄ - 3.402 g), and Dipotassium phosphate, (K ₂ HPO ₄ - 4.354
	g) and Water q.s.p 1 L (Shelf life: 2 months). (6.90 at 15 °C); (6.88 at 20 °C);
	(6.86 at 25 °C); $(6.85 at 30 °C)$.
	4 pH buffer solution - 9.22 at 20 °C · Solution containing Decahydrated Borax
	$(B_1O_2Na_2 10 H_2O_3 3810 g)$ Water $a \le p \ 1 \ L_1 (pH \cdot 9.22 at 20 °C)$
	PS: Basic buffer solutions are quickly altered by the carbon dioxide in the
	surrounding air and it is therefore necessary to renew the solution for each
	calibration)
	Note: market_available reference buffer solutions can also be used (according to
	the DIM 1026(standard and NDS, for example)
	the DIN 19266 standard and NBS, for example).
Method of Analysis	Calibration of the measurement chain
	1. Two standard solutions are needed to calibrate the pH meter. Their pH
	should, if possible, be located on either side of the presumed pH value of the
	test solution; if this is not possible, one of them must not differ by more than
	one unit pH from the presumed value.
	2. Zero setting the measurement chain (pH): Operate in accordance with the
	instructions provided with the apparatus used. Rinse the electrodes with the
	first standard buffer solution by pouring the liquid along them.
	3. Introducing a sufficient volume of the same standard solution into the
	measuring vessel (it should be clean and dry) and immerse the electrodes.
	4. Adjust the indication of the pH meter on the pH value of the standard solution
	taking into account its temperature (if necessary).
	5. Remove the electrodes and discard the standard solution contained in the
	measuring vessel.
	Setting the slope of the electrode
	6. Rinse the electrodes with distilled or deionised water and then with the
	second standard buffer solution introduce a sufficient volume of the same
	standard buffer solution and immerse the electrodes. If the result matches the
	known value of the nH of the standard solution the unit is in working
	known value of the pri of the standard solution, the unit is in working
	condition and is properly calibrated.
	Calibration Check
	7. Use a buffer solution with an intermediate pH value in relation those used for
	calibration.
	pH measurements
	8. Once the device has been calibrated, rinse the electrodes and the measuring
	vessel, first with deionised or distilled water, then with the test solution by
	proceeding as above.
	9. Homogenize the test solution, introduce a sufficient volume in the measuring
	vessel.
	10. Immerse the electrodes.
	11. Lightly stir the test solution.
	12. Verify that the indication given by the pH meter is stable and record it.
Calculation with units of	EXPRESSION OF RESULTS
expression	1. In the operating conditions described above, the accuracy of the
	determination is ± 0.02 pH units.
	2. The results are expressed in units of pH, at a temperature of 20 °C, in the
	form pH at 20 $^{\circ}$ C = xx, xx

77 | MoM – Alcoholic Beverages

Reference	Compendium	of	International	Methods	of	Spirituous	Beverages	of
	Vitivinicultural	Ori	gin, Internation	al Organisa	ation	Of Vine An	d Wine, Edi	tion
	2019, pH, Meth	nod l	No OIV-MA-BS	5-13				
Approved by	Scientific Pane	lon	Methods of San	npling and A	Analy	/sis		

	Determination of Anethole - Gas Chromatography determination of Trans-			
FOOD SAFETY AND STANDARDS	anethole in Spirit Drinks of Viti-vinicultural origin			
AUTHORITY OF INDIA Inspiring Trust, Assuring Safe & Nutritious Food				
Ministry of Health and Family Welfare, Government of India				
Method No.	FSSAI 13.041:2021	Revision No. & Date	0.0	
Scope	Anethole (also known as	anise camphor) is an organic of	compound that is widely	
	used as a flavouring sub	stance. It is a derivative of pl	henylpropene, a type of	
	aromatic compound that of	occurs widely in nature, This n	nethod is suitable for the	
	determination of trans-and	ethole in aniseed flavoured spi	rit drinks using capillary	
	gas chromatography.			
Caution	1. Trans-anethole: May cause an allergic skin reaction. Avoid breathing dust			
	/fume/gas/mist/vapor	s/spray.		
	2. Estragole: Harmful	if swallowed, Acute or	ral toxicity. Recently	
	estragole carcinogenio	city is reported.		
Principle	Concentration of the	trans-anethole in spirit is	s determined by gas	
	chromatography (GC).	The same quantity of an in	ternal standard, e.g. 4-	
	allylanisole (estragole) (w	hen estragole is not naturally j	present in the sample), is	
	added to the test sample	and to a trans-anethole refer	ence solution of known	
	concentration, both of wh	hich are then diluted with a 4:	5% ethanol solution and	
	injected directly into the C	JC system.	nin a an altraia fan liananna	
	An extraction is necessary	before sample preparation du	ring analysis for liqueurs	
Appointing / Instruments	1 Concern Classwore and	s of sugars.	2)	
Apparatus / Instruments	1. General Glassware and	apparatus (Refer 2.0 at page in	10. 2). onisation datastor (FID)	
	2. A capital y gas childh	data handling system canable	of massuring pask grass	
	and with an automatic sampler or the necessary equipment for manual sample			
	injection	sampler of the necessary equip	ment for manual sample	
	3 Split/splitless injector			
	4 Capillary column: Le	ength - 50 m [.] Internal diam	neter - 0.32 mm [.] Film	
	thickness - 0.2 µm:	Stationary phase – Free Fa	tty Acid Phase (FFAP-	
	modified TPA polyeth	vlene glycol cross-linked poroi	is Polymer .	
Materials and Reagents	1. Alcoholic beverages.			
	2. Trans-anethole (>98%	pure: stored at 4 °C) - Trans-	anethole will need to be	
	"thawed" from its crys	stalline state before use but in	this case its temperature	
	should never exceed 3	5 °C.	F	
	3. Estragole (>98% pure:	stored at 4 °C).		
	4. Water of at least grade	3 as defined by ISO 3696.		
	5. Ethanol 96%	, and the system of the system		
Preparation of reagents	1. Ethanol 45%: Add 560	g of distilled water to 378 g of	f ethanol 96% vol.	
	Preparation of standard so	olutions		
	2. Standard solution A -S	Stock solution of trans-anethole	e (concentration - 2 g/L):	
	Weigh 40 mg of trans-	-anethole in a 20 mL volumetr	ric flask. Add some 96%	
	ethanol and make up to	o volume with 45% vol. ethano	l, mix thoroughly.	
	3. Internal standard solu	ution B - Stock solution of	internal standard, e.g.	
	estragole (concentratio	on- 2 g/L): Weigh 40 mg of	f estragole in a 20 mL	
	volumetric flask. Add	some 96% vol. ethanol make	up to volume with 45%	
	vol. ethanol, mix thoro	oughly.		
	4. All standard solutions	should be stored at room temp	erature (15-35 °C) away	
	from light in aluminiu	m containers or in tinted (amb	er) glass reagent bottles.	

	The stopper should preferably be fitted with an aluminium seal. The stock
	The slopper should preterably be fued with an arunning sear. The slock
	solutions must be freshry prepared each week.
	Solutions used to check the linearity response of the FID
	5. The linearity response of the FID must be checked for the analysis taking into
	account a range of concentrations of trans-anethole in spirits from 0 g/L up to
	0.25 g/L. (In the procedure of analysis, the unknown samples of spirits to be
	analysed are diluted 10 times).
	6. For the conditions of the analysis described in the method, stock solutions
	corresponding to concentrations of 0, 0.05, 0.1, 0.15, 0.2, and 0.25 g/L of
	trans-anethole in the sample to be analysed are prepared as follows: take 0.5,
	1, 1.5, 2, and 2.5 mL of stock solution A and pipette in separate 20 mL
	volumetric flasks: pipette into each flask 2 mL of internal standard solution B
	and make up to volume with 45% vol. ethanol, mix thoroughly.
	7 The blank solutions are used as the $0 g/L$ solution.
	8 Standard solution C:
	Take 2 mL of standard solution A and pipette into a 20 mL volumetric flask
	then add 2 mL of internal standard solution B and make up to volume with
	45% vol. ethanol, mix thoroughly.
Sample Preparation	Preparation of unknown samples
Sumpre : reputation	1 Pinette 2 mL sample into a 20 mL volumetric flask then add 2 mL of internal
	standard solution B and make up to volume with 45% vol. ethanol mix
	thoroughly
	2 Rlank - Pinette 2 mL of internal standard solution B into a 20 mL volumetric
	flask and make up to volume with 45% yol ethanol mix thoroughly
Mathad of Analysis	1 The column type and dimensions and the GC conditions should be such
Withou of Analysis	that anothele and the internal standard are separated from each other and
	from any interfering substances
	2 Typical conditions for the column:
	i Carrier gas: analytical helium
	i. Carrier gas. analytical heritin.
	iii Injector temperature: 250 °C
	in. Injector temperature: $250 ^{\circ}\text{C}$
	IV. Detector temperature conditions isothermal $180 ^{\circ}\text{C}$ must time 10 min
	v. Oven temperature conditions: isothermal, 180°C, full time 10 min
	vi. Injection volume: 1 μ L, split 1:40
	3. Samples should be stored at room temperature, away from light and cold.
	Procedure
	4. Sample screening for estragole.
	5. To ensure that there is no estragole naturally present in the sample, a blank
	analysis should be carried out without the addition of any internal standard.
	6. If estragole is naturally present, then another internal standard must be
	chosen (for instance menthol). Pipette 2 mL sample into a 20 mL volumetric
	flask and make up to volume with 45% vol. ethanol (4.4), mix thoroughly.
	7. Linearity test Prior to the commencement of the analysis the linearity of the
	response of the FID should be checked by successively analysing in
	triplicate each of the linearity standard solutions.
	8. From the integrator peak areas for each injection plot a graph of their mother
	solution concentration in g/L versus the ratio R for each.
	\mathbf{R} = trans-anethole peak area divided by the estragole peak area.

	10. Determination:
	Inject the blank solution, followed by standard solution C, followed by one
	of the linearity standards which will act as a quality control sample (this may
	be chosen with reference to the probable concentration of trans-anethole in
	the unknown), followed by 5 unknowns; insert a linearity (quality control)
	sample after every 5 unknown samples, to ensure analytical stability.
Calculation with units of	Measure peak areas (using an integrator or other data system) for trans-anethole
expression	and internal standard peaks.
-	1. Response factor (RFi) calculation
	The response factor is calculated as follows
	$RF_i = \left(\frac{C_i}{area_i}\right) \times \left(\frac{area_{is}}{C_{is}}\right)$
	Where:
	$C_{\rm is}$ the concentration of trans-anethole in the standard solution A
	C_1 is the concentration of internal standard in the standard solution R
	C_{1S} is the area of the trans-anethole neak
	area, is the area of the internal standard neak $\frac{1}{2}$
	RE_{is} is calculated from the 5 samples of standard solution C
	$\frac{1}{2}$ Analysis of the linearity response test solutions
	Inject the linearity response test solutions
	3 Analysis of the sample
	Inject the unknown sample solution (head – sample preparation)
	PESIII TS
	The formula for the calculation of the concentration of trans anothole is the
	following $c_{a} = C_{a} \times (a^{area_{i}}) \times DE$
	$following: c_i = C_{is} \times (\frac{1}{area_{is}}) \times RF_i$
	where:
	c _i is the unknown trans-anethole concentration
	C _{is} is the concentration of internal standard in the unknown
	Area _i is the area of the trans-anethole peak
	Area _{is} is the area of the internal standard peak
	RF _i is the response coefficient (calculated as in pt. no. 8 - Method of Analysis)
	The trans-anethole concentration is expressed as grams per litre, to one decimal
	place.
	QUALITY ASSURANCE AND CONTROL
	The chromatograms should be such that anethole and the internal standard are
	separated from each other and from any interfering substances. The RF _i value is
	calculated from the results for the 5 injections of solution C. If the coefficient of
	variation (CV % = (standard deviation/mean) $*100$)) is within plus or minus 1%,
	the KF_i average value is acceptable.
	I ne calculation above should be used to calculate the concentration of trans-
	anemole in the sample selected for the quality control from the linearity control
	Solutions.
	In the mean calculated results from analysis of the intearity solution selected for Internal Quality Control complex (IQC) are within plug or minute 2.5% of their
	theoretical value, then the regults for the unknown semples can be accented
Deference	ISO 3606: 1087 Water for analytical laboratory year. Specifications and test
Neierence	methods
Approved by	Scientific Panel on Methods of Sampling and Analysis

	Determination of Trans-anethole in Spirit Drinks containing large amount		
JSSAT FOOD SAFETY AND STANDARDS	of Sugar by GC Analysis		
Inspiring Trust, Assuring Safe & Nutritious Food Ministry of Health and Family Welfare, Government of India			
Method No.	FSSAI 13.042:2021	Revision No. & Date	0.0
Scope	Extraction of alcohol from	m spirit drinks containing a la	arge amount of sugar, in
	order to be able to determ	ine the trans-anethole concentration	ration using capillary gas
	chromatography.		
Caution	1. Trans-anethole: May c	cause an allergic skin reaction	n. Avoid breathing dust
	/fume/gas/mist/vapors/	spray.	-
	2. Estragole: Harmful	if swallowed, Acute or	al toxicity. Recently
	estragole carcinogenicity is reported.		
	3. Ammonium sulphate:	Causes irritation to skin, ey	es and respiratory tract.
	May be narmful if swa	llowed. Avoid contact with ey	es, skin and clotning.
	4. Sourum phosphate, and eves Breathing Sodiu	m Phosphate Dibasic can irriv	tate the nose and throat
	causing coughing and	wheezing. High and repeate	ed exposure can cause a
	skin rash.	8 8 1 I	I
Principle	Take an aliquot of the	liqueur sample and add the	internal standard, at a
	concentration similar to t	hat of the analyte (trans-aneth	nole) in the liqueur. Add
	sodium phosphate dodec	and abill to develop two loves	nonium sulphate. Shake
	alcohol layer. Take an ali	and chill to develop two layer	dilute with 45 % ethanol
	solution Analyse the resi	ulting solution using gas chrou	matography as described
	in FSSAI 13.041:2021	and gold and gold office	inatography as accented
Apparatus / Instruments	1. General Glassware and	l apparatus (Refer 2.0 at page r	10. 2).
	2. Equipment as described	d in FSSAI 13.041:2021	
Materials and Reagents	1. Alcoholic beverages.		
	2. Animomum surprate, annythous, (Furity >9770) 3. Sodium phosphate, dibasic, dodecabydrate, (Purity >99%)		
	4 Materials and Reagents	s as described in ESSAI 13.041	1.2021
Sample Preparation	Sample screening for estra	agole	
	1. To ensure that there is	s no estragole naturally preser	nt in the sample, a blank
	extraction and analysi	s should be carried out with	out the addition of any
	internal standard. If	estragole is naturally presen	t, then another internal
	standard must be chose	en.	
	2 Pipette 5 mL of 96% e	thanol into a conical flask we	igh into this flask 50 mg
	of internal standard, an	nd add 50 mL of the sample.	Add 12 g of ammonium
	sulphate, anhydrous, a	nd 8.6 g of dibasic sodium pl	nosphate, dodecahydrate.
	Stopper the conical flas	sk.	
	3. Shake the flask for at	least 30 min. A mechanical	shaking device may be
	used, but not a Teflon	coated magnetic stirring bar, a	as the Tetlon will absorb
	some of the analyte. Note that the added salts will not dissolve completely. A place the stoppered flack in a refrigerator $(T < 5 ^{\circ}C)$ for at least two hours		
	5. After this time, there s	hould be two distinct liquid la	evers and a solid residue.
	The alcohol layer sho	uld be clear; if not replace in	h the refrigerator until a
	clear separation is achi	eved.	~
	6. When the alcohol lay	ver is clear, carefully take an	n aliquot (e.g. 10 mL),

	without disturbing the aqueous layer, place in an amber vial and close				
	securely.				
	Preparation of the extracted sample to be analysed				
	7. Allow extract to reach room temperature. Take 2 mL of the alcohol layer of				
	the extracted sample and pipette into a 20 mL volumetric flask, make up to				
	volume with 45% ethanol, mix thoroughly.				
Procedure	Analyse as described in FSSAI 13.041:2021				
Calculation with units of	Follow the procedure as outlined in FSSAI 13.041:2021				
expression	CALCULATION OF RESULTS				
	Use the following formula to calculate the results				
	$C_i = \left(\frac{m_{is}}{N}\right) \times \left(\frac{area_i}{N}\right) \times RF_i$				
	$V = area_{is}$				
	Where:				
	m _{is} is the weight of internal standard taken (in milligrams)				
	V is the volume of unknown sample (50 mL)				
	RF_i is the response factor (21.0)				
	area _i is the area of the trans-anethole peak				
	area _{is} is the area of the internal standard peak				
	The results are expressed in grams per litre, to one decimal place.				
Reference	Compendium of International Methods of Spirituous Beverages of				
	Vitivinicultural Origin by International Organisation of Vine and Wine, Edition				
	2019, Anethole. Determination of trans-anethole by GC, Method No. OIV-MA-				
	BS-15 : R2009				
Approved by	Scientific Panel on Methods of Sampling and Analysis				

	Determination of the Principal Compounds Extracted from Wood during				
FOOD SAFETY AND STANDARDS	Ageing of Spirit Drinks of Viti-vinicultural origin				
AUTHORITY OF INDIA Inspiring Trust, Assuring Safe & Nutritious Food					
Ministry of Health and Family Welfare, Government of India	ESSAL 12.042.2021 Devision No. 8- Data 0.0				
Niethod No.	FSSAI 13.043:2021 Revision No. & Date 0.0				
Scope	The present method pertains to the determination of furtural, 5-hydroxyl				
	incurrentaria, 5-memoriaria, vaninin, syringaldenyde, conferaldenyde,				
	sinapaidenyde, gainc, eilagic, vaninc, and syringic acids, and scopoleun, by				
Caution	nign performance liquid chromatography.				
Caution	1. Methanol: Methanol is mgnly flammable and toxic. Direct ingestion of more than 10 mL can cause permanent blindness by destruction of the optic perve				
	noisoning of the central nervous system, come and possibly death. These				
	hazards are also true if methanol vanors are inhaled. It is best to avoid direct				
	exposure				
	2. Acetic acid: Acetic acid can be a hazardous chemical if not used in a safe and				
	appropriate manner. This liquid is highly corrosive to the skin and eves and.				
	because of this, must be handled with extreme care. Acetic acid can also be				
	damaging to the internal organs if ingested or in the case of vapor inhalation.				
Principle	Determination by high-performance liquid chromatography (HPLC), with				
_	detection by ultraviolet spectrophotometry at several wavelengths, and by				
	spectrofluorimetry.				
Apparatus	1. General Glassware and apparatus (Refer 2.0 at page no. 2).				
	2. A high-performance liquid chromatograph capable of functioning in binary				
	gradient mode and equipped with:				
	3. A spectrophotometric detector capable of measuring at wavelengths from 280				
	to 313 nm. It is however preferable to work with a multiple wavelength				
	detector with a diode array or similar, in order to confirm the purity of the				
	peaks.				
	4. A spectrofluorimetric detector – excitation wavelength: 354 nm, emission				
	detectable at 213 nm by spectrophotometry)				
	5 An injection device canable of introducing 10 or 20 µL of the test cample				
	5. An injection device capable of introducing 10 of 20 μL of the test sample.				
	maximum narticle size				
	7 Syringes for HPLC				
	8. Device for membrane-filtration of small volumes.				
	9. Integrator-computer or recorder with performance compatible with the entire				
	apparatus, and in particular, it must have several acquisition channels.				
Materials and Reagents	1. Alcoholic beverages.				
	The reagents must be of analytical quality. The water used must be distilled				
	water or water of at least equivalent purity.				
	2. Microfiltered water with a resistivity of 18.2 M Ω .				
	3. 96% vol. alcohol.				
	4. HPLC-quality methanol (Solvent B).				
	5. Accule actu. Reference standards of 00% minimum purity				
	6 Furfural				
	7. 5-Hydroxymethyl furfural.				
	8. 5-Methylfurfural.				
	······································				

	9. Vanillin.
	10. Syringaldehyde.
	11. Coniferaldehyde.
	12. Sinapaldehyde.
	13. Gallic acid.
	14 Filagic acid
	15. Vanillic acid
	16. Svringie acide
	10. Synnight actus.
Deres and the set of some some to	17. Scopoleum.
Preparation of reagents	1. HPLC-quality methanol (Solvent B).
	2. Acetic acid diluted with Microfiltered water (with a resistivity of 18.2 M Ω)
	to 0.5% vol. (Solvent A).
	3. Mobile phases: Solvent A (0.5% acetic acid) and solvent B (pure methanol).
	Filter through a membrane (porosity 0.45 μ m).
	4. Degas in an ultrasonic bath, if necessary.
	Reference solution - the standard substances are dissolved in a 50% vol.
	aqueous-alcoholic solution.
	5. Furfural: 5 mg/L.
	6. 5-Hydroxymethyl furfural: 10 mg/L.
	7. 5-Methylfurfural 2 mg/L.
	8. Vanillin: 5 mg/L.
	9. Svringaldehvde: 10 mg/L.
	10. Coniferaldéhyde: 5 mg/L.
	11 Sinapaldehyde: 5 mg/L
	12 Gallic acid: 10 mg/L
	13. Ellagic acid: 10 mg/L
	14. Vanillie acid: 5 mg/l
	14. Valinite actu. 5 mg/L.
	15. Symigic acid. 5 mg/L.
Sample Preparation	Preparation of the samples for injection - The reference solution and the spirit
	drink are filtered if necessary through a membrane with a maximum pore
	diameter of 0.45 µm.
Method of Analysis	Chromatographic operating conditions:
	1. Carry out the analysis at ambient temperature.
	2. Flow rate -0.6 mL/min
	3. Gradient (given as an example only)
	Time: $0 \min$ $50 \min$ $70 \min$ $90 \min$
	solvent A (water-acid): 100% 60% 100% 100%
	solvent B (methanol): 0% 40% 0% 0%
	Note that in certain cases this gradient should be modified to avoid co-elutions.
	Determination
	A Inject the reference standards senarately then mixed
	4. Injust the relations conditions so that the resolution factors of the realize of
	3. Adapt the operating conditions so that the resolution factors of the peaks of
	an une compounds are equal to at least 1.
	o. Inject the sample as prepared in FSSAI 13.010:2021, after filtering it through
	a membrane.
	/. Measure the area of the peaks in the reference solution and the spirit drink
	and calculate the concentrations.

Calculation with units of	Calculate the concentration of each constituent by compare the peak areas of		
expression	respective constituent in reference solution and spirit drinks.		
	Express the concentration of each constituent in mg/L.		
Reference	Compendium of International Methods of Spirituous Beverages Of Vitivinicultural Origin by International Organisation Of Vine And Wine, Edition 2019, Principal compounds extracted from wood during ageing Method No. OIV-MA-BS-16		
Approved by	Scientific Panel on Methods of Sampling and Analysis		

	Determination of α-dicarbonyl Compounds in Spirituous Beverages of Viti-				
ISSAL FOOD SAFETY AND STANDARDS	vinicultural Origin by Gas Chromatography after derivation by 1,2				
Inspiring Trust, Assuring Safe & Nutritious Food Ministry of Health and Family Wolfam. Government of India	diaminobenzene				
Method No.	FSSAI 13.044:2021	Revision No. & Date	0.0		
Scope	The principal α-Dicarbor	nyl compounds found in wir	ne spirits are: Glyoxal,		
	Methylglyoxal, Diacetyl a	nd Pentane-2,3-dione.	1 2 7		
	Their molecular formulas	are:			
	(i) Glyox	al: OCH–CHO (ethanedial)			
	(ii) Methylglyoxal: CH3–CO–CHO (2-oxopropanal)				
	(iii) Diacetyl: CH3–CO–CO–CH3 (butane-2,3-dione)				
	(iv) Pentane-2,3-dione: CH3–CH2–CO–CO–CH3				
	(v) Hexane-2,3-dione: CH3-CH2-CH2-CO-CO-CH3				
	The principal α -dicarbon	nyl compounds of wine (h	exane-2,3-dione is not		
	Dicarbonyl compounds ar	a important bacausa of their sa	u).		
	Applicability: This metho	applies to spirituous bever	rages of viti-vinicultural		
	origin for a content of car	bonyl compounds included be	tween 0.05 mg/L and 20		
	mg/L.	eonyr compounds meraddu oc			
Caution	1. 1,2-Diaminobenzene:	Toxic if swallowed. Harmful	in contact with skin or if		
	inhaled. May cause an	allergic skin reaction.			
	2. Sulphuric acid: Conce	entrated sulfuric acid is extre	emely corrosive and can		
	cause serious burns w	when not handled properly. T	This chemical is unique		
	because it not only cau	ises chemical burns, but also s	secondary thermal burns		
	as a result of denydration. This dangerous chemical is capable of corrodin				
	skin, paper, metals, and	id even stone in some cases.	If suffuric acid makes		
	this chemical may ca	use internal burns irreversil	t dimuness. If ingested,		
	nossibly death	use mernar burns, meversu	sie organ damage, and		
	3. Acetic acid: Acetic acid	d can be a hazardous chemical	if not used in a safe and		
	appropriate manner. Th	nis liquid is highly corrosive to	o the skin and eyes and,		
	because of this, must be	be handled with extreme care.	Acetic acid can also be		
	damaging to the interna	al organs if ingested or in the ca	ase of vapor inhalation.		
	4. Sodium hydroxide: So	dium hydroxide is strongly irr	ritating and corrosive. It		
	can cause severe burns	and permanent damage to an	y tissue that it comes in		
	contact with. Sodium h	ydroxide can cause hydrolysi	s of proteins, and hence		
	can cause burns in the e	eyes which may lead to perman	ient eye damage.		
	5. Dichloromethane: Hig	her levels of dichloromethane	e inhalation can lead to		
	Exposure - Redness at	d irritation may occur if skir	comes in contact with		
	liquid dichloromethane	and if it remains on the skin	for an extended period		
	of time, it may lead to s	skin burns.	Tor an extended period		
Principle	The method is based or	n the formation of quinoxali	ne derivatives from α-		
	dicarbonyl compounds with	th 1,2-diaminobenzene			
		22	A N R2		
	∫ Ť · Ň_	→ →			
	R1 R1	10			
	- NH ₂		N R1		
	1,2 -diaminobenzene α-Dicarbo	nyl	Quinoxaline		

87 | MoM - Alcoholic Beverages

	Formation of 1,2-Diaminobenzene Dicarbonyl Quinoxaline derivative		
	Formation of derivatives		
	Formation of derivatives.		
	The reaction takes place in the spirituous beverage diluted four-fold, pH 8 and after a reaction time of 3 h at 60 °C. The analysis of the derivatives is then		
	carried out after extraction of the derivatives by dichloromethane and analysis by		
	gas chromatography with detection by mass spectrometry (GC-MS) or using a		
	specific detector of nitrogenous compounds.		
Apparatus / Instruments	1. General Glassware and apparatus (Refer 2.0 at page no. 2).		
	2. Gas chromatography with detection by mass spectrometry (GC-MS) or using		
	a special nitrogenised compound detector.		
	3. Moderately polar, polyethylene glycol capillary column (such as the		
	Carbowax 20M, BP21) with the following dimensions (as an example):50 m		
	$X 0.32 \text{ mm} X 0.25 \mu\text{m}.$		
	4. Data acquisition system.		
	6. Magnetic stirrer		
	7 Oven which can be set to $60 ^{\circ}\text{C}$		
	8. 30 mL screw-cap flasks.		
	9. Micro syringes.		
Materials and Reagents	1. Alcoholic beverages.		
	2. Glyoxal (in a 40% solution).		
	3. Methylglyoxal (in a 40% solution).		
	4. Diacetyl (> 99% pure).		
	5. Pentane-2,3-dione (> 97% pure).		
	6. Hexane-2,3-dione (> 90% pure).		
	7. 1,2-Diaminobenzene in the form of powder, $> 9/\%$ pure.		
	o. water for HPLC (according to standard EN ISO 3696).		
	7. Emailor (HFLC glaue). 10. Sodium hydroxide		
	11. Acetic acid - pure crystallisable.		
	12. Dichloromethane.		
	13. Anhydrous sodium sulphate.		
	14. Sulphuric acid.		
Preparation of reagents	1. 50% vol. hydroalcoholic solution - Mix 50 mL of pure ethanol for HPLC,		
	with 50 mL of water.		
	2. Solution of internal standard hexane-2,3-dione at 2.0 g/L. Place 40 mg of		
	hexane-2,3-dione in a 30 mL flask, dilute in 20 mL of 50% vol.		
	hydroalcoholic solution, stir until complete dissolution.		
	5. Sodium Hydroxide (0.11vi): Dissolve sodium hydroxide (4 g) in 100 mL		
	4 Sulphuric acid 2M (H-SO, 2M): Dilute concentrated sulphuric acid (11 mL)		
	to 100 mL with water		
Samples Preparation	Dilute the spirituous beverage four-fold in water.		
Method of Analysis	1. Place 10 mL of spirituous beverage (diluted four-fold) in a 30 mL flask		
A CONTRACT OF A FIRME J DED	2. Bring to pH 8 while stirring, with sodium hydroxide 0.1 M.		
	3. Add 5 mg of 1,2-diaminobenzene.		
	4. Add 10 μ L of hexane-2,3-dione (internal standard@ at 2.0 g/L).		
	5. Close the flask using a screw-cap fitted with a Teflon-faced seal. Stir until		

88 | MoM - Alcoholic Beverages

	interpreting of the performance studies relating to the analysis methods.					
	Repeatability.					
	27. The repeatability of the GC-MS-SIM method displays variation coefficients					
	ranging between 2 and 5% for the four dicarbonyl compounds.					
	Recovery rate.					
	28. The quantities added to a wine were recovered within a below 6% deviation					
	from expected results.					
	Linearity.					
	29. Linear correlations were obtained in concentration domains ranging between					
	0.05 to 20 mg/L.					
	Detection limit.					
	30. The detection limit of most of the derived dicarbonylated products is 0.05					
	mg/L.					
Calculation with units of	Mass spectra (ion m/z (intensity of the molecular ion in relation to that of the					
expression	basic peak) of derivatives of dicarbonyl compounds by 2,3 diaminobenzene are					
	provided below:					
	Dicarbonylated Derivative Mass spectrum					
	(principal compound ions and abundance)					
	1. Glyoxal Quinoxaline: 130(100), 103 (56.2), 76(46.8), 50(20.2)75 (10.4), 131					
	(9.4).					
	2. Methylglyoxal 2-Methyl quinoxaline: 144 (100), 117 (77.8), 76(40.5), 77					
	(23.3)50 (21.9), 75 (11.3), 145(10.3).					
	3. Diacetyl 2,3-Dimethyl quinoxaline: 117 (100), 158 (75.6), 76(32.3),					
	77(23.1)50 (18.3), 75 (10.4).					
	4. Pentane-2,3-dione 2-Ethyl-3-methylquinoxaline 171 (100), 172 (98),					
	130(34.1), 75(33.3), 77(21), 50(19.4), 144(19), 143(14.1), 103(14).					
	5. Hexane-2,3-dione 2,3-Diethylquinoxaline 158 (100), $1/1$ (20.1), $76(13.7)$, 77					
D.C.	(12.8), 159(11.4), 157(10.8), 50(8.1).					
Keierence	Compendium of International Methods of Spirituous Beverages Of					
	vitivinicultural Origin by International Organisation Of Vine And Wine, Edition					
	2019, Analysis of α -diacarbonyl compounds by gaschromatography after derivation by 1.2 Diaminghamong Mathed Mathed Net OV/MA DS 17					
	derivation by 1,2-Diaminobenzene, Method, Method No. UIV-MA-BS-1/					
Approved by	Scientific Panel on Methods of Sampling and Analysis					

	Determination of Propan-2-ol by Gas Chromatography					
Authority of India						
Ministry of Health and Family Welfare, Government of India						
Method No.	FSSAI 13.045:2021	Revision No. & Date	0.0			
Scope	This assay is not part of the	he official determinations prov	ided by the international			
-	regulations, but is quite	often requested since propa	in-2-ol is not a natural			
	constituent of fermented	beverages of vinous origin.	It may be added to the			
	alcohol during its denatur	ration. The presence (or more	accurately lack thereof)			
	of this compound must b	be verifiable. In addition it ma	ay be present in various			
	alcoholic beverages.					
Caution	1. Propan-2-ol: Highly fl	lammable liquid and vapor. M	lay cause drowsiness or			
	dizziness. Causes seri	ous eye irritation. Symptoms,	/effects after inhalation-			
	exposure to high conce	entrations- coughing.				
	2. Pentan-1-ol: This subs	stance is a flammable liquid a	nd vapour, is harmful if			
	inhaled, causes skin irr	itation and may cause respirate	ory irritation			
Principle	The separation of propag	n-2-ol from ethanol is carrie	d out by means of gas			
-	chromatography.					
Annaratus / Instruments	1 General Glassware and	l annaratus (Refer 2.0 at nage r	2)			
rppurutus / mstruments	2 Gas chromatograph equ	uipped with a flame ionization	detector			
	3 Classic stainless steel of	column 6 m long and with an i	ternal diameter of 2 mm			
	and Stationary phase	- for example coated with	h diglycerol at 5% on			
	Chromosorb P 60-80 m	hesh (0.22 to 0.32 mm)	in digiyeeror at 570 on			
	Note: It is also possible to	use a mixture of phases know	n as the ESD [.] Ervthritol			
	sorbitol diglycerol res	pectively at 1% 2.5% and 5%	weight of the support (it			
	can be used in other phases: porapak poraplot etc.)					
	4. Nitrogen R * carrier gas (Air Liquid standard).					
	5. Oven: Isothermal temperature 80 °C.					
	6. The settings of the various gas flows must be performed to obtain proper					
	performance of the chromatograph.					
Materials and Reagents	1. Alcoholic beverages.					
	2. Propan-2-ol.					
	3 Pentan-1-01					
Sample Preparation	1 For a qualitative test	the sample of the alcoholic h	everage can be injected			
Sample I reparation	directly into the gas ch	romatograph $(1 \text{ to } 2 \text{ uL})$	everage can be injected			
	2 For accurate dosing is	possible to use an internal star	ndard separated from the			
	other alcohols such as	pentan-1-ol	licard separated from the			
	3 Pentan-1-ol content m	ust be the same order of m	agnitude as that of the			
	propan-2-ol.					
Method of Analysis	Assay:					
	1. Depending on whether	the purpose is to detect the p	resence of the propan-2-			
	ol or measure it, a refe	prence solution of propan-2-ol	must be injected into the			
	pure alcohol, its conten	nt depending on the required d	lose (in principle several			
	grams per litre).	· · · ·	· • •			
	2. For accurate dosing t	he internal calibration metho	d will be applied using			
	pentan-1-ol.					
Calculation with units of	The concentrations of pro-	pan-2-ol will be calculated using	ng the traditional method			
expression	in gas chromatography	with the use of an internal	standard (c.f. volatile			
	substances) and expressed	l in g/hL of alcohol at 100% vo	ol.			
	-					

Reference	Compendium	of	International	Methods	of	Spirituous	Beverages	Of
	Vitivinicultural Origin by International Organisation Of Vine And Wine, Edition							
	2019, Propan-2-ol by GC, Method No. OIV-MA-BS-20							
Approved by	Scientific Pane	l on	Methods of San	npling and A	Anal	ysis		

	Determination of A	Absorbance Test in UV light of	of Neutral Alcohol		
AUTHORITY OF INDIA Inspiring Trust, Assuring Safe & Nutritious Food Ministry of Health and Family Weltare, Government of India					
Method No.	FSSAI 13.046:2021	Revision No. & Date	0.0		
Scope	This method can be used liable to enter into the con	to determine the optical perme nposition of certain alcoholic b	ability of neutral alcohol everages.		
Caution	Hexane: Chronic exposur If swallowed, it may can system, resulting in short or chest, and even chemic	e can cause more severe damag use severe abdominal pain an ness of breath, coughing, burn al pneumonitis.	ge to the nervous system. d impact the respiratory ning of the mouth, throat		
Principle	The optical permeability of the sample in the wavelength range from 220 to 270 nm is measured against a defined reference substance with high optical permeability.				
Apparatus /Instruments	 General Glassware and UV-visible spectropho Quartz cells 10 mm th 	l apparatus (Refer 2.0 at page r tometer. ick, with identical spectral tran	10. 2). smission.		
Materials and Reagents	 Alcoholic beverages. Hexane for spectrosco 	py.			
Method of analysis	 Rinse the tanks clean b sample, dry the tanks of Treat the reference cel Determine the absorba 	beforehand with a sample solut butside. l (n) with hexane in the same w nce value and build the graph.	ion and then fill with the vay and fill it.		
Calculation with units of	The absorbance values re	corded at 270, 240, 230 and 22	20 nm should not exceed		
expression	the following values: 0.02, 0.08, 0.18 and 0.3. The absorbance curve must be				
	smooth and regular.				
Reference	Compendium of Inter Vitivinicultural Origin by 2019, Ultraviolet light tes	national Methods of Spi International Organisation Of t for neutral alcohol, Method N	rituous Beverages of Vine And Wine, Edition Io. OIV-MA-BS-21		
Approved by	Scientific Panel on Metho	ods of Sampling and Analysis			

	Dete	Determination of Ethyl Carbamate				
ISSAT FOOD SAFETY AND STANDARDS						
AUTHORITY OF INDIA Inspiring Trust, Assuring Safe & Nutritious Food						
Ministry of Health and Family Welfare, Government of India						
Method No.	FSSAI 13.047:2021	Revision No. & Date	0.0			
Scope	Ethyl carbamate (EC), a	llso known as urethane, is	a compound found in			
	fermented foods and beve	rages. It's also a known carcin	ogen. The formation and			
	distribution of ethyl carb	pamate (urethane) occurs dur	ing pot still distillation.			
	When copper was presen	t, during and subsequent to c	distillation, formation of			
	ethyl carbamate was time	e-dependent. The degree of fo	ormation was maximised			
	between pH 4 and 6.					
Caution	1. Ethyl carbamate: May	v be harmful if swallowed. N	May cause cancer. May			
	cause harm to breast-fe	ed children. May cause damage	to the nervous system.			
	2. Dichloromethane: Hig	her levels of dichloromethan	e inhalation can lead to			
	headache, mental conf	fusion, nausea, vomiting, dizz	ziness and fatigue. Skin			
	Exposure - Redness an	nd irritation may occur if skin	n comes in contact with			
	liquid dichloromethane	and, if it remains on the skir	n for an extended period			
	of time, it may lead to	skin burns.				
Principle	The assay is performed by	direct injection of the drink i	nto a gas chromatograph			
	coupled to a mass spectro	meter operating under the prin	ciple of electron impact,			
	in "Selected Ion Monitorin	ng (SIM)" acquisition mode.	-			
Apparatus / Instruments	1. General Glassware and	apparatus (Refer 2.0 at page r	10. 2).			
	2. Gas chromatography w	with detection by mass spectron	netry (GC-MS).			
	3. Capillary column of t	the Carbowax 20 M (50 m	x 0.22 mm) type, film			
	thickness 0.2 µm.					
	4. Data acquisition system	n.				
Materials and Reagents	1. Alcoholic beverages.					
	2. Propyl carbamate (Refe	erence and internal standard).				
	3. Ethyl carbamate (Refer	rence).				
	4. Ethanol.					
	5. Distilled water.					
	6. Ether.					
	7. Sourium surphate.	valut type)				
	o. Porus porymer (of Extr	eiui type).				
Dronaration of reagants	J. Diciliolo illetitalle					
reparation of reagents	Dissolve propyl carbornat	te(100 mg/L) in a 50% vol	hydroalcoholic solution			
	(Check that the alcohol us	ed is free of ethyl carbamate)	nyuroarconone solution.			
Sample Preparation	Addition of the internal et	andard				
	1 At 5 mL of the alcol	nolic beverage add 50 µL of	f the solution of propyl			
	carbamate (at 100 mg/I	L) which results in 1 mg/L in the	he sample.			
	Note: this final quantity of	f the internal standard in the s	ample can be modulated			
	according to the ethyl of	carbamate content in the mediu	im to be analyzed.			
	2. In the case of sweet	alcoholic beverages (over 10) g/L), after adding the			
	internal standard it is	preferable to extract the eth	vl carbamate as per the			
	following methods	F	j= - meaning as per the			
	3. Method 1: Extract the	ethyl carbamate with ether after	er saturating the medium			
	with excess sodium sul	phate to fix the water (or)	6 vite interiori			
	4. Method 2: Fixing t	he carbamates (ethyl carbar	nate and them internal			
	standard) on a porous	polymer (of Extrelut type) f	ollowed by elution with			
			, and a gradient with			

	dichloromethane.						
Method of analysis	1. Capillary column of the Carbowax 20 M (50 mx 0.22 mm) type, film thickness 0.2 μm.						
	2. Temperature programming from 60 to 200 °C, 3 °C per minute.						
	3. Data acquisition method of the mass spectrometer: Selected Ion Monitoring (SIM), MZ = 62, 74, 84.						
	4. The chromatograms are re-processed with the single ion $M/Z = 62$. The other ions are used to confirm peak purity by taking into account the ratio of their respective intensities.						
	Note: Certain NP or Hall sensors can be used.						
	PREPARATION OF THE REFERENCE SOLUTION						
	5. According to the alcoholic beverage to be analyzed, prepare a solution of ethyl carbamate at 50 μ g/L or 400 μ g/L or more if necessary.						
	6. 5 mL of the reference solution are added by 50 μL of the internal standard solution (propyl carbamate at 100 mg/L).						
	7. The solution is injected using the Splitless mode (valve closure for 20 to 30						
	seconds) by 2 μ L of the prepared solution into the chromatograph after bein properly adjusted.						
Calculation with units of expression	The ethyl carbamate is expressed in $\mu g/L$ of the spirit.						
Reference	Compendium of International Methods of Spirituous Beverages of						
	Vitivinicultural Origin by International Organisation of Vine And Wine, Edition						
	2019, Ethyl carbamate, Method No. OIV-MA-BS-25						
Approved by	Scientific Panel on Methods of Sampling and Analysis						

	Det	ermination of Colour Intensi	ity		
FOOD SAFETY AND STANDARDS					
Inspiring Trust, Assuring Safe & Nutritious Food Ministry of Health and Family Welfan, Government of India					
Method No.	FSSAI 13.048:2021	Revision No. & Date	0.0		
Scope	Alcoholic beverage of a n	atural "golden yellow" colour.			
Principle	Colour intensity is deterr	nined by measuring the absor	bance at 445 nm for an		
	optical length of 1 cm thic	ck (for traditional alcoholic bev	verages).		
Apparatus / Instruments	1. General Glassware and	l apparatus (Refer 2.0 at page r	10. 2).		
	2. A spectrophotometer e	nabling measurements at differ	rent wavelengths.		
	3. Glass tanks with an op	tical path length of 1 cm and 0.	.2 cm.		
Materials and Reagents	1. Alcoholic beverages				
Method of analysis	1. Measure the absorband	ce at the wavelength 445 nm c	of the alcoholic beverage		
	placed in a glass tank	with an optical path length of	I cm by setting the zero		
	Of the absorbance scale	compared with distilled water			
	2 It is possible to measure	sure the absorbance at any w	vavelength for alcoholic		
	beverages naturally as	ged in wood and/or suppleme	ented by caramel and/or		
	supplemented by "woo	dy" brandies because in all cas	ses the absorption curves		
	are continuous, without any maximum, or even a significant change in slope.				
	3. Taking into account the maximum perceived by human vision it would be				
	preferable to perform the measurement at 530 nm.				
	4. The hue or hue gamut between two alcoholic beverages can be expressed, in				
	5 Theoretically the sample should not be filtered if it is a product intended for				
	5. Theoretically the sample should not be intered if it is a product intended for direct consumption, but care should be taken to ensure that the sample is free				
	of particles that are	not a priori contained in t	the alcoholic beverage.		
	especially those resulti	ng from corking.			
	Alcoholic beverage conta	ning synthetic dyes.			
	6. First, the absorption m	aximum should be measured,	and then the wavelength		
	corresponding to the	selected maximum, if necessa	ry using a tank with an		
	optical path length of ().2 cm.	······································		
Calculation with units of	express the colour intension	sity by the absorbance measures the size of the colorimet	red under the conditions		
CAP1 (2551011	wavelength.				
Reference	Compendium of Inter	national Methods of Spi	rituous Beverages of		
	Vitivinicultural Origin by	International Organisation of	Vine And Wine, Edition		
	2019, Colour intensity, M	ethod No. OIV-MA-BS-26			
Approved by	Scientific Panel on Metho	ds of Sampling and Analysis			

	Determination of Calcium by Atomic Absorption Spectrophotometric					
FOOD SAFETY AND STANDARDS	(AAS) Method					
Inspiring Trust, Assuring Safe & Nutritious Food Ministry of Health and Family Welfare, Government of India						
Method No.	FSSAI 13.049:2021 Revision No. & Date 0.0					
Scope	Calcium present in the alcoholic beverages is determined.					
Caution	1. Hydrochloric acid: Hydrochloric acid is a hazardous liquid which must be					
	used with care. The acid itself is corrosive, and concentrated forms release					
	acidic mists that are also dangerous. If the acid or mist come into contact with					
	the skin, eyes, or internal organs, the damage can be irreversible or even fatal					
Dringinla	In severe cases.					
rincipie	air acetylene flame using a calcium hollow-cathode lamp, wavelength of 422.7					
	nm. on the dealcoholised alcoholic beverage, concentrated 2 times. The					
	magnet is performed in the presence of lanthanum chloride referred to as					
	the "matrix modifier".					
Apparatus / Instruments	1. General Glassware and apparatus (Refer 2.0 at page no. 2).					
	2. Volumetric flasks -25, 50, 100, 1000 mL.					
	3. Volumetric pipettes -1, 2, 3, 4, 10, 50 mL.					
	4. Test tube- 100 mL.					
	5. Beaker -250 mL.					
	0. Tablel bolle - 20 IIL.					
	model)					
	8. Reducing air-acetylene flame, flow rates: air: 7.5 V_{min}					
	9. C2 H2: 4.0 V _{min} .					
	10. Calcium hollow-cathode lamp with calcium; Wavelength: 422.7 nm, slit					
	(slit): 0.2 nm, lamp intensity: 5 mA.					
Materials and Reagents	1. Ultrapure demineralised water resistivity 18.2 M Ω .					
	 Stock solution 1 g/1 of Calcium: (e.g. 11trisol Merck). Hydrochloric acid d = 1.18 (35% minimum) 					
	4. Lanthanum chloride (LaCl ₃ .6H ₂ O)					
Prenaration of reagents	4. Lanualum cmonue (LaCl ₃ .0Π ₂ Ο) 1. Solution of 100 mg/L of calcium: Place 10 mL of stock solution in a 100 mL					
reparation of reagents	flask, fill to volume with demineralised water.					
	2. Lanthanum Chloride Solution, 25 g/L: Weigh 63.6 g of lanthanum chloride					
	(LaCl ₃ .6H ₂ O) in a 1000 mL flask, add approximately 500 mL of					
	demineralised water, then to the test tube 50 mL of hydrochloric acid. After					
	solubilisation, allow to cool and fill to volume with demineralised water.					
	3. Calibration range: 2, 4, 6, 8 mg/L of calcium: Place successively 1.0, 2.0, 3.0,					
	4.0 mL of the solution at 100 mg/L Calcium in four 50 mL vials, add 10 mL					
	of the solution of lanthanum chloride, and fill to volume with demineralised					
Sample Preparation	1 The calcium content in alcoholic beverages is often very low it is therefore					
Sample I reparation	necessary to concentrate the sample by evaporating the alcohol. Pipette 50					
	mL of the alcoholic beverage into a 250 mL beaker. Evaporate the alcohol in					
	a water bath to about one volume of 10 mL.					
	2. Leave to cool.					
	3. Pour the concentrate into a vial of 25 mL, rinse the beaker and fill to volume					

97 | MoM - Alcoholic Beverages

	with demineralised water.
	4. Place 4 mL of this solution to be determined prepared in a clean, dry tablet
	bottle with 1 mL of lanthanum chloride solution.
	5. Cork it and stir.
Method of analysis	1. Successively present the calibration solutions, the blank solution, and the
	samples.
	2. Note the corresponding absorbance.
Calculation with units of	1. Establish the calibration curve absorbance = f (concentration in mg/L
expression	calcium) by the least squares method.
	2. Deduce the concentration of calcium in mg/L taking into account the
	concentration factor.
Reference	Compendium of International Methods of Spirituous Beverages Of
	Vitivinicultural Origin by International Organisation of Vine And Wine, Edition
	2019, Determination of calcium by atomic absorption, Method No. OIV-MA-
	BS-29
Approved by	Scientific Panel on Methods of Sampling and Analysis

	Determination of Lead by Atomic Absorption Spectrophotometric (AAS)						
ISSAT FOOD SAFETY AND STANDARDS		Method					
Inspiring Trust, Assuring Safe & Nutritious Food Ministry of Health and Family Welfare, Government of India							
Method No.	FSSAI 13.050:2021	Revision No. & Date	0.0				
Scope	Lead present in the alcoho	blic beverages is determined.					
Caution	1. Phosphoric acid: Phos	phoric acid can be very hazar	dous in the case of skin				
	contact, eye contact, a	nd ingestion. It can also caus	e irritation if vapors are				
	inhaled. Repeated or p	prolonged exposure to phospho	pric acid mist can lead to				
	chronic eye irritation,	severe skin irritation, or pro-	olonged respiratory tract				
	issues.						
	2. Nitric acid: May be fatal if inhaled. Causes severe eye and skin burns. Causes						
	severe respiratory and	digestive tract burns. Strong	g oxidizer. Contact with				
	other material may	cause a fire. Acute pulmor	hary edema or chronic				
	obstructive lung disea	se may occur from inhalation	n of the vapors of nitric				
	acid. Corrosive to	metal. Target Organs: Lung	s, eyes, skin, mucous				
D · · · ·	membranes.						
Principle	Lead is determined direct	ctly in the alcoholic beverage	e, using a lead hollow-				
	modifier.	ess atomic absorption speed	ometry, using a matrix				
Apparatus / Instruments	1. General Glassware and	l apparatus (Refer 2.0 at page r	10. 2).				
	2. Atomic absorption sp	bectrophotometer equipped w	vith a graphite oven, a				
	nonselective absorption	n corrector and a multi-potentie	ometric recorder.				
	3. Lead hollow-cathode lamp.						
Materials and Peagents	4. Micropipettes with special tips for atomic absorption measurements.						
Materials and Reagents	1 The water used must l	be double-distilled in a borosi	licate glass apparatus or				
	1. The water used must be double-distilled in a borosilicate glass apparatus or with water of equivalent purity.						
	2. Phosphoric acid ($\rho 20 = 1.71 \text{ g/mL}$).						
	3. Nitric acid ($\rho 20 = 1.38 \text{ g/mL}$)						
Devenue d'ann a fana a san ta	4. Lead solution to 1 g/L.	ion. Diluto nhoonhonio ocid ((-100 mJ) to $100 mJ$ with				
Preparation of reagents	1. Phosphoric acid soluti water	ion: Dhute phosphoric acid (o IIIL) to 100 IIIL with				
	2. Lead solution to 1 g/I	(Use a standard commercial	solution): This solution				
	can be obtained by dis	ssolving 1.600 g of lead nitrat	te II, Pb $(NO_3)_2$ in nitric				
	acid diluted to 1% (v/v) and adjusting the volume to	1 L. Keep the solution in				
	a borosilicate glass bot	tle with a ground glass stopper					
	3. Nitric acid solution di	(v/v) (solution (boric acid solution at 6%				
	with the nitric acid solu	ution at 1%.	none acta solution at 070				
Sample Preparation	1. Add to the test sample	le of the alcoholic beverage	an equal volume of the				
	solution of phosphorie	c and nitric acids. Determine	e its absorbance If it is				
	greater than 0.6, dilute	the alcoholic beverage (a dilut	tion of 1/5 is sufficient in				
	1110St Cases).	n by adding to the test sample	of the diluted alcoholic				
	beverage an equal volu	me of the solution of phosphore	ric and nitric acids.				
Method of analysis	1. Preparation of the s	olutions in the calibration ra	ange: Using the control				
	solution of lead, prepa	are dilutions in which 50% of	the final volume is the				
· · · · · · · · · · · · · · · · · · ·	•						

	solution of phosphoric and nitric acids The concentration scale of the range					
	containing	p = 10 - 20 - 30 microg	the appara	d per litre	repare solut	lons
	2. Determina	tion	141115 01 104	a per nue.		
	2.1 Oven pro	gram.				
	Step	Temperature (°C)	Time (s)	Nitrogen (L/min)	Reading	
	1	75	2	3	U	
	2	95	20	3		
	3	140	15	3		
	4	300	8	3		
	5	450	7	3		
	6	480	10	3		
	7	900	20	3		
	8	900	1	0		
	9	2250	0.7	0	L	
	10	2250	1	0	L	
	11	2250	2	3		
	 Measurements: Select wavelength 283.3 nm. Set to zero the absorbance scale with double distilled water. Using a micropipette or an automatic sampler, inject into the programmed oven 3 times 5 lt. of each solution in the calibration range and of the solution of the sample to be analysed. Record the measured absorbances. Calculate the mean absorbance value based on the results for the three injections. The absorbances are measured in height of peaks. 					
Calculation with units of	Plot the chan	iges in absorbance v	ersus the constant	oncentrations of lead	d in solution	1S Of
expression	absorbance of	of the sample solution	on on the c	alibration curve and	determine	then
	concentration	C of lead		anoration curve and		then
	The lead con	centration in microg	rams per lit	re of alcoholic beve	rage is equa	al to:
	$C \times F$	C	1		0 1	
	F = dilution f	actor.				
Reference	Compendium	n of International	l Method	s of Spirituous	Beverages	of
	Vitivinicultur	ral Origin by Interna	tional Orga	nisation of Vine An	d Wine, Ed	ition
	2019, Determ	nination of lead by at	omic absor	ption, Method No. C	DIV-MA-BS	-32
Approved by	Scientific Panel on Methods of Sampling and Analysis					
एफएसएसएआई	Determination of Ochratoxin A in Wine and other Fermented Alcoholic					
---	--	------------------------------------	---------------------------			
fssat	Beverages					
भारतीय शाख्य सुरक्षा और मानला पार्थितरुण Food Safety and Standards Authonity of Ioda						
स्टास्थ्य और परिपार कल्याण मंत्राराय Ministry of Health and Family Wettare						
Method No.	FSSAI 13.051:2024	Revision No. & Date	0.0			
Scope	Applicable to the determine	nation of ochratoxin A in Wi	ne and Other Fermented			
	alcoholic Beverages at >0	.06 ng/L.				
Caution	OTA is toxic as well as carcinogenic in nature, use nitrile gloves while handling					
	these substances. Prior to sample extract disposal, the solutions must be treated					
	with 5–6% sodium hypoc	hlorite. All glass ware exposed	to the residues of these			
	toxins must be rinsed with methanol and 1% sodium hypochlorite solution and					
Drin sin la	then washed.					
Principie	Wine and beer are diluted with a solution containing polyethylene glycol and					
	immunoaffinity column	OTA is eluted with metha	and and quantified by			
	reversed-phase liquid chro	omatography (HPLC) with fluc	prometric detection.			
Apparatus/Instruments	1. Microbalance (Me	easuring to within ± 0.01 mg).				
	2. Glass vials - 4 mL. (Note: Certain types of vials might lead to losses of					
	OTA during evap	oration. To avoid this, silanizat	tion can be used. Prepare			
	vials by filling the	nem with silanizing reagent a	nd leave this reagent in			
	vials for 1 min.	Rinse vials twice with a solve	ent [toluene, acetone, or			
	hexane] followed by water [twice], and dry vials).					
	3. Volumetric flasks	- 5 mL, with accuracy of at least	$ast \pm 0.5\%$.			
	4. Vacuum manifold - To accommodate immunoaffinity columns.					
	5. Reservoirs and allachments -10 III immunoallimity columns.					
	7 Immunoaffinity columns - Containing antibodies against OTA with a					
	total binding capacity of ≥ 100 ng OTA and a recovery of $\geq 85\%$ when a					
	diluted wine solut	ion containing 100 ng OTA is	applied.			
	8. Solvent evaporator.					
	9. Syringe and microliter pipet(s).—250 μL.					
	10. HPLC system equipped with pump (Isocratic; delivering constant flow					
	rate of 1.0 mL/min.), Injection system (Syringe-loading injection valve					
	with 100 µL injection loop, or equivalent.					
	11. HPLC analytical column - Stainless steel (150×4.6 mm id) packed with					
	5 μm C18 reversed-phase material.					
	12. Reversed-phase guard column (i.e., 20×4.6 mm id, 0.5μ m particle size)					
	or guard filter (i.e., 0.5µm, Rheodyne); Columns of different dimensions					
	may be used, if	they adequately resolve the O	of A peak from all other			
	peaks. 13 Eluoroscoppo dotector Eitted with a flow call and set at 222 res					
	(excitation) and 460 nm (emission) indicating a neak from >0.02 ng of					
	OTA.					
	14. Data collection system.					
	15. UV spectrophotometer.					
Materials and Reagents	1. Polyethylene glyc	ol (PEG) - PEG 8000.				
	2. Methanol - HPLC	grade.				
	3. Acetonitrile - HPI	LC grade.				

	4. Water - HPLC grade.
	5. Glacial acetic acid - 99% purity.
	6. Toluene - Analytical grade.
	7. Ochratoxin A (OTA).—Crystalline form, film, or solution (stored in the
	dark at 4°C).
Preparation of Reagents	1. Diluting solution (1% PEG + 5% NaHCO ₃ , pH 8.3) - Dissolve PEG (10
	g) and NaHCO ₃ (50 g) in water (950 mL) and dilute to 1 L with water.
	2. Washing solution (2.5% NaCl + 0.5% NaHCO ₃ , pH 8.1) - Dissolve
	NaCl (25 g), and NaHCO ₃ (5 g) in 950 mL water and dilute to 1 L with
	water.
	3. HPLC mobile phase [Water-acetonitrile-glacial acetic acid (99 + 99 +
	2, v/v/v; pH 3.2)] - Mix 990 mL water, 990 mL and 20 mL acetic acid,
	filter through 0.45µm filter and degas (e.g., with He).
	4. Solvent mixture [Toluene–acetic acid $(99 + 1, v/v)$] - Mix 99 parts, by
	volume of toluene with 1 part by volume of acetic acid.
	5. OTA stock solution - Dissolve OTA (1 mg) or the contents of 1 ampule
	(if OTA has been obtained as a film) in the solvent mixture, (4), to
	prepare a solution containing OTA at approximately 20–30 µg/mL. To
	determine the exact concentration, record the absorption curve between
	300 and 370 nm in a 1 cm quartz cell with the solvent mixture (4) as the
	reference. Identify the maximum absorption, and calculate the mass
	concentration of OTA, C_{OTA} , in $\mu g/mL$, using the following equation:
	$C_{OTA} = A_{max} \times M \times 100/\epsilon \times \delta$
	Where A_{max} is the absorption determined at the maximum of the
	absorption curve (at 333 nm); M is the relative molecular mass of OTA ($M =$
	403.8 g/mol); ε is the relative molar absorption coefficient of OTA in the solvent
	mixture (4), ($\epsilon = 544 \text{ m}^2/\text{mol}$); and δ is the path length of the quartz cell in cm.
	This solution is stable at -18° C for ≥ 4 years.
	6. OTA standard solution [2 μ g/mL in toluene–acetic acid (99 + 1, v/v)].
	Dilute stock solution (5), with solvent mixture (4) to obtain a standard
	solution with a mass concentration of OTA of 2 µg/mL. Store standard
	solution at $+4^{\circ}$ C.
	7. Calibration solutions - Pipet 0.5 mL standard solution containing OTA at
	2 µg/mL, into a glass vial, and evaporate the solvent under a stream of
	N. Re-dissolve contents of vial in 10 mL HPLC mobile phase, which
	has been filtered through a $0.45\mu m$ filter. This gives a solution
	containing OTA at 100 ng/mL. Take 6 different volumes (30, 100, 300,
	1000, 2000, 3000 μ L) of this solution in separate 5mL volumetric flasks
	and Dilute each standard solution to volume (5 mL) with filtered HPLC
	mobile phase (3) to obtain solutions with following concentrations (0.6,
	2.0, 6.0, 20, 40 and 60 ng/mL). Inject 100 μ L of each calibration
	solution (containing 0.06, 0.20, 0.60, 2.00, 4.00 and 6.00 ng
	respectively) into the HPLC system.
Sample Preparation	1. Cool beer at $+4^{\circ}$ C for 30 min to prevent fast foam formation.
	2. Degas by sonicating for 1 h.
	3. Pour 10 mL of alcoholic beverage into a 100 mL conical flask.
	4. Add 10 mL diluting solution. Mix vigorously. Filter through glass
	microfiber filter, if solution is cloudy solutions or if solid residue is
	formed after dilution.

	5. Connect the immunoaffinity column to the vacuum manifold and attach	
	the reservoir to the immunoaffinity column. Add 10 mL (equivalent to 5	
	mL alcoholic beverage) diluted solution to the reservoir, and pass	
	solution through the immunoaffinity column at a flow rate of about 1	
	drop/s. Do not permit the immunoaffinity column to run dry.	
	6. Wash the immunoaffinity column with 5 mL washing solution and then	
	with 5 mL water at a flow rate of 1-2 drops/s. Dry the column by	
	passing air through it.	
	7. Elute OTA into the vial by passing 2 mL methanol at a flow rate of 1	
	drop/s.	
	8. Evaporate the eluate to dryness at 50°C under N. Re-dissolve eluate	
	immediately in 250 µL HPLC mobile phase and store at +4°C until	
	HPLC analysis.	
Method of analysis	1. Set flow rate of the mobile phase at 1.0 mL/min.	
	2. Inject 100 μ L reconstituted extract (equivalent to 2 mL alcoholic	
	beverage) into the HPLC system.	
	3. Quantify OTA by comparing OTA peak area with the relevant	
	calibration curve. If the content of OTA in the test solutions fall outside	
	the calibration range, dilute test extracts.	
	4. Prepare a calibration curve at the beginning of every day of analysis and	
Colorlation with white of	Determine from the collibration currie the amount of OTA (in ng) in the cliquet	
Calculation with units of	of test solution injected into the HDLC system	
expression	of test solution injected into the HFLC system.	
	Calculate the concentration of OTA (C \cdot in ng/mI) from the following	
	equation:	
	$C_{\alpha\tau i} = M_{i} \times (2/V_{i}) \times (V_{2}/V_{2})$	
	Where M_A is the mass of OTA (in ng) in the aliquot injected on column	
	determined from the calibration graph;	
	2 is the dilution factor;	
	V_1 is the volume of solution taken for analysis (10 mL);	
	V_2 is the volume of test solution injected on column (100 µL);	
	V_3 is the volume of solution used to dissolve the dried eluate (250 mL).	
Reference	Angelo Visconti, Michelangelo Pascale, And Gianluca Centonze; Determination	
	of Ochratoxin A in Wine and Beer by Immunoaffinity Column Cleanup and	
	Liquid Chromatographic Analysis with Fluorometric Detection: Collaborative	
	Study; Journal of AOAC International. 84, (6), 2001; 1818-1827.	
Approved by	Scientific Panel on Methods of Sampling and Analysis	

ANNEXURE-I DETERMINATION OF ALCOHOL CONTENT % BY VOL. OF BEVERAGES USING SPECIFIC GRAVITY Vs. ALCOHOL% TABLE

Sp.gr @20°C	% by Vol
0.99	7.15
0.9899	7.23
0.9898	7.31
0.9897	7.39
0.9896	7.47
0.9895	7.55
0.9894	7.63
0.9893	7.71
0.9892	7.79
0.9891	7.87
0.989	7.95
0.9889	8.03
0.9888	8.11
0.9887	8.19
0.9886	8.27
0.9885	8.35
0.9884	8.44
0.9883	8.52
0.9882	8.6
0.9881	8.68
0.988	8.76
0.9879	8.84

Sp.gr @20°C	% by Vol
0.9878	8.93
0.9877	9.01
0.9876	9.09
0.9875	9.17
0.9874	9.26
0.9873	9.34
0.9872	9.42
0.9871	9.51
0.987	9.59
0.9869	9.67
0.9868	9.75
0.9867	9.84
0.9866	9.92
0.9865	10
0.9864	10.09
0.9863	10.17
0.9862	10.25
0.9861	10.34
0.986	10.42
0.9859	10.5
0.9858	10.59
0.9857	10.67

Sp.gr @20°C	% by Vol
0.9856	10.75
0.9855	10.84
0.9854	10.92
0.9853	11
0.9852	11.09
0.9851	11.17
0.985	11.26
0.9849	11.34
0.9848	11.43
0.9847	11.51
0.9848	11.59
0.9845	11.68
0.9844	11.76
0.9843	11.85
0.9842	11.93
0.9841	12.02
0.984	12.1
0.9839	12.19
0.9838	12.28
0.9837	12.36
0.9836	12.45
0.9835	12.53

104 | MoM - Alcoholic Beverages

Sp.gr @20°C	% by Vol
0.9834	12.62
0.9833	12.71
0.9832	12.8
0.9831	12.88
0.983	12.97
0.9829	1306
0.9828	13.14
0.9827	13.23
0.9826	13.32
0.9825	13.41
0.9824	13.49
0.9823	13.58
0.9822	13.67
0.9821	13.76
0.982	13.85
0.9819	13.94
0.9818	14.02
0.9817	14.11
0.9816	14.2
0.9815	14.29
0.9814	14.38
0.9813	14.47
0.9812	14.56
0.9811	14.65
0.981	14.74
·	

Sp.gr @20°C	% by Vol
0.9809	14.83
0.9808	14.92
0.9807	15.01
0.9806	15.1
0.9805	15.19
0.9804	15.28
0.9803	15.37
0.9802	15.46
0.9801	15.54
0.98	15.64
0.9799	15.73
0.9798	15.82
0.9797	15.91
0.9796	16
0.9795	16.09
0.9794	16.18
0.9793	16.27
0.9792	16.36
0.9791	16.45
0.979	16.54
0.9789	16.64
0.9788	16.73
0.9787	16.82
0.9786	16.91
0.9785	17

Sp.gr @20°C	% by Vol
0.9784	17.1
0.9783	17.19
0.9782	17.28
0.9781	17.38
0.978	17.47
0.9779	17.56
0.9778	17.66
0.9777	17.75
0.9776	17.84
0.9775	17.94
0.9774	18.03
0.9773	18.12
0.9772	18.22
0.9771	18.31
0.977	18.41
0.9769	18.5
0.9768	18.6
0.9767	18.69
0.9766	18.79
0.9765	18.88
0.9764	18.98
0.9763	19.07
0.9762	19.17
0.9761	19.26
0.976	19.36

Sp.gr @20°C	% by Vol
0.9759	19.45
0.9758	19.55
0.9757	19.64
0.9756	19.74
0.9755	19.83
0.9754	19.93
0.9753	20.02
0.9752	20.12
0.9751	20.21
0.975	20.3
0.9749	20.4
0.9748	20.49
0.9747	20.59
0.9746	20.68
0.9745	20.77
0.9744	20.87
0.9743	20.96
0.9742	21.05
0.9741	21.15
0.974	21.24
0.9739	21.33
0.9738	21.42
0.9737	21.52
0.9736	21.61
0.9735	21.7

Sp.gr @20°C	% by Vol
0.9734	21.79
0.9733	21.89
0.9732	21.98
0.9731	22.07
0.973	22.16
0.9729	22.25
0.9728	22.34
0.9727	22.43
0.9726	22.52
0.9725	22.62
0.9724	22.71
0.9723	22.8
0.9722	22.89
0.9721	22.98
0.972	23.07
0.9719	23.16
0.9718	23.25
0.9717	23.34
0.9716	23.43
0.9715	23.52
0.9714	23.61
0.9713	23.7
0.9712	23.79
0.9711	23.88
0.971	23.97

Sp.gr @20°C	% by Vol
0.9709	24.06
0.9708	24.15
0.9707	24.24
0.9706	24.33
0.9705	24.42
0.9704	24.51
0.9703	24.59
0.9702	24.68
0.9701	24.77
0.97	24.86
0.9699	24.95
0.9698	25.04
0.9697	25.12
0.9696	25.21
0.9695	25.3
0.9694	25.39
0.9693	25.48
0.9692	25.56
0.9691	25.65
0.969	25.74
0.9689	25.83
0.9688	25.91
0.9687	26
0.9686	26.09
0.9685	26.17

 $106 \mid M \circ M - A l c \circ h \circ l i c B e v e r a g e s$

Sp.gr @20°C	% by Vol
0.9684	26.26
0.9683	26.35
0.9682	26.43
0.9681	26.52
0.968	26.61
0.9679	26.69
0.9678	26.78
0.9677	26.86
0.9676	26.95
0.9675	27.04
0.9674	27.12
0.9673	27.21
0.9672	27.29
0.9671	27.38
0.967	27.46
0.9669	27.55
0.9668	27.63
0.9667	27.72
0.9666	27.8
0.9665	27.89
0.9664	27.97
0.9663	28.05
0.9662	28.14
0.9661	28.22
0.966	28.31

Sp.gr @20°C	% by Vol
0.9659	28.39
0.9658	28.47
0.9657	28.56
0.9656	28.64
0.9655	28.73
0.9654	28.81
0.9653	28.89
0.9652	28.98
0.9651	29.06
0.965	29.14
0.9649	29.22
0.9648	29.31
0.9647	29.39
0.9646	29.47
0.9645	29.55
0.9644	29.64
0.9643	29.72
0.9642	29.8
0.9641	29.88
0.964	29.96
0.9639	30.04
0.9638	30.12
0.9637	30.20
0.9636	30.29
0.9635	30.37

Sp.gr @20°C	% by Vol
0.9634	30.45
0.9633	30.53
0.9632	30.61
0.9631	30.69
0.963	30.77
0.9629	30.85
0.9628	30.92
0.9627	31
0.9626	31.08
0.9625	31.16
0.9624	31.24
0.9623	31.32
0.9622	31.4
0.9621	31.47
0.962	31.55
0.9619	31.63
0.9618	31.71
0.9617	31.78
0.9616	31.86
0.9615	31.94
0.9614	32.01
0.9613	32.09
0.9612	32.17
0.9611	32.24
0.961	32.32

107 | MoM - Alcoholic Beverages

Sp.gr @20°C	% by Vol
0.9609	32.39
0.9608	32.47
0.9607	32.54
0.9606	32.62
0.9605	32.69
0.9604	32.77
0.9603	32.84
0.9602	32.92
0.9601	32.99
0.96	33.07
0.9599	33.14
0.9598	33.22
0.9597	33.29
0.9596	33.36
0.9595	33.44
0.9594	33.51
0.9593	33.59
0.9592	33.66
0.9591	33.73
0.959	33.8
0.9589	33.88
0.9588	33.95
0.9587	34.02
0.9586	34.09
0.9585	34.16
	1

Sp.gr @20°C	% by Vol
0.9584	34.24
0.9583	34.31
0.9582	34.38
0.9581	34.45
0.958	34.52
0.9579	34.59
0.9578	34.66
0.9577	34.73
0.9576	34.8
0.9575	34.88
0.9574	34.95
0.9573	35.02
0.9572	35.09
0.9571	35.16
0.957	35.23
0.9569	35.3
0.9568	35.37
0.9567	35.43
0.9566	35.5
0.9565	35.57
0.9564	35.64
0.9563	35.71
0.9562	35.78
0.9561	35.85
0.956	35.92

35.99
36.05
36.12
36.19
36.26
36.33
36.39
36.46
36.53
36.6
36.66
36.73
36.8
36.87
36.93
37
37.07
37.13
37.2
37.27
37.33
37.4
37.46
37.53
37.6

Sp.gr @20°C	% by Vol
0.9534	37.66
0.9533	37.73
0.9532	37.79
0.9531	37.86
0.953	37.92
0.9529	37.99
0.9528	38.05
0.9527	38.12
0.9526	38.18
0.9525	38.25
0.9524	38.31
0.9523	38.38
0.9522	38.44
0.9521	38.51
0.952	38.57
0.9519	38.63
0.9518	38.7
0.9517	38.76
0.9516	38.83
0.9515	38.89
0.9514	38.95
0.9513	39.02
0.9512	39.08
0.9511	39.14
0.951	39.21
l	1

Sp.gr @20°C	% by Vol
0.9509	39.27
0.9508	39.33
0.9507	39.4
0.9506	39.46
0.9505	39.52
0.9504	39.58
0.9503	39.65
0.9502	39.71
0.9501	39.77
0.95	39.83
0.9499	39.9
0.9498	39.96
0.9497	40.02
0.9496	40.08
0.9495	40.15
0.9494	40.21
0.9493	40.27
0.9492	40.33
0.9491	40.39
0.949	40.46
0.9489	40.52
0.9488	40.58
0.9487	40.64
0.9486	40.70
0.9485	40.76

Sp.gr @20°C	% by Vol
0.9484	40.82
0.9483	40.88
0.9482	40.95
0.9481	41.01
0.948	41.07
0.9479	41.13
0.9478	41.19
0.9477	41.25
0.9476	41.31
0.9475	41.37
0.9474	41.43
0.9473	41.49
0.9472	41.55
0.9471	41.61
0.947	41.67
0.9469	41.73
0.9468	41.79
0.9467	41.85
0.9466	41.91
0.9465	41.97
0.9464	42.03
0.9463	42.09
0.9462	42.15
0.9461	42.21
0.946	42.27

Sp.gr @20°C	% by Vol
0.9459	42.32
0.9458	42.38
0.9457	42.44
0.9456	42.5
0.9455	42.56
0.9454	42.62
0.9453	42.68
0.9452	42.74
0.9451	42.8
0.945	42.85
0.9449	42.91
0.9448	42.97
0.9447	43.03
0.9446	43.09
0.9445	43.15
0.9444	43.2
0.9443	43.26
0.9442	43.32
0.9441	43.38
0.944	43.43
0.9439	43.49
0.9438	43.55
0.9437	43.61
0.9436	43.66
0.9435	43.72

Sp.gr @20°C	% by Vol
0.9434	43.78
0.9433	43.84
0.9432	43.89
0.9431	43.95
0.943	44.01
0.9429	44.06
0.9428	44.12
0.9427	44.18
0.9426	44.23
0.9425	44.29
0.9424	44.35
0.9423	44.4
0.9422	44.46
0.9421	44.52
0.942	44.57
0.9419	44.63
0.9418	44.69
0.9417	44.74
0.9416	44.8
0.9415	44.86
0.9414	44.91
0.9413	44.97
0.9412	45.02
0.9411	45.08
0.941	45.13
k	

Sp.gr @20°C	% by Vol
0.9409	45.19
0.9408	45.24
0.9407	45.3
0.9406	45.36
0.9405	45.41
0.9404	45.47
0.9403	45.52
0.9402	45.58
0.9401	45.63
0.94	45.69
0.9399	45.74
0.9398	45.8
0.9397	45.85
0.9396	45.9
0.9395	45.96
0.9394	46.01
0.9393	46.07
0.9392	46.12
0.9391	46.18
0.939	46.23
0.9389	46.28
0.9388	46.34
0.9387	46.39
0.9386	46.45
0.9385	46.5

Sp.gr @20°C	% by Vol
0.9384	46.55
0.9383	46.61
0.9382	46.66
0.9381	46.72
0.938	46.77
0.9379	46.82
0.9378	46.88
0.9377	46.93
0.9376	46.98
0.9375	47.04
0.9374	47.09
0.9373	47.14
0.9372	47.2
0.9371	47.25
0.937	47.3
0.9369	47.36
0.9368	47.41
0.9367	47.46
0.9366	47.52
0.9365	47.57
0.9364	47.62
0.9363	47.68
0.9362	47.73
0.9361	47.78
0.936	47.84

Sp.gr @20°C	% by Vol
0.9359	47.89
0.9358	47.94
0.9357	47.99
0.9356	48.05
0.9355	48.1
0.9354	48.15
0.9353	48.2
0.9352	48.26
0.9351	48.31
0.935	48.36
0.9349	48.41
0.9348	48.47
0.9347	48.52
0.9346	48.57
0.9345	48.62
0.9344	48.67
0.9343	48.73
0.9342	48.78
0.9341	48.83
0.934	48.88
0.9339	48.93
0.9338	48.99
0.9337	49.04
0.9336	49.09
0.9335	49.14

Sp.gr @20°C	% by Vol
0.9334	49.19
0.9333	49.24
0.9332	49.3
0.9331	49.35
0.933	49.4
0.9329	49.45
0.9328	49.5
0.9327	49.55
0.9326	49.6
0.9325	49.65
0.9324	49.71
0.9323	49.76
0.9322	49.81
0.9321	49.86
0.932	49.91
0.9319	49.96
0.9318	50.01
0.9317	50.06
0.9316	50.11
0.9315	50.16
0.9314	50.21
0.9313	50.26
0.9312	50.31
0.9311	50.36
0.931	50.41

Sp.gr @20°C	% by Vol
0.9309	50.46
0.9308	50.51
0.9307	50.56
0.9306	50.62
0.9305	50.67
0.9304	50.72
0.9303	50.77
0.9302	50.82
0.9301	50.87
0.93	50.92
0.9299	50.97
0.9298	51.02
0.9297	51.07
0.9296	51.12
0.9295	51.16
0.9294	51.21
0.9293	51.26
0.9292	51.31
0.9291	51.36
0.929	51.41
0.9289	51.46
0.9288	51.51
0.9287	51.56
0.9286	51.61
0.9285	51.66

Sp.gr @20°C	% by Vol
0.9284	51.71
0.9283	51.76
0.9282	51.81
0.9281	51.86
0.928	51.91
0.9279	51.96
0.9278	52.01
0.9277	52.06
0.9276	52.11
0.9275	52.16
0.9274	52.21
0.9273	52.26
0.9272	52.31
0.9271	52.35
0.927	52.4
0.9269	52.45
0.9268	52.5
0.9267	52.55
0.9266	52.6
0.9265	52.65
0.9264	52.7
0.9263	52.75
0.9262	52.8
0.9261	52.84
0.926	52.89

Sp.gr @20°C	% by Vol
0.9259	52.94
0.9258	52.99
0.9257	53.04
0.9256	53.09
0.9255	53.14
0.9254	53.19
0.9253	53.23
0.9252	53.28
0.9251	53.33
0.925	53.38
0.9249	53.43
0.9248	53.48
0.9247	53.52
0.9246	53.57
0.9245	53.62
0.9244	53.67
0.9243	53.72
0.9242	53.77
0.9241	53.82
0.924	53.86
0.9239	53.91
0.9238	53.96
0.9237	54.01
0.9236	54.06
0.9235	54.1

0.9234 54.15 0.9233 54.2 0.9232 54.25 0.9231 54.3 0.923 54.35 0.923 54.35 0.923 54.35 0.923 54.39 0.9228 54.44 0.9227 54.49 0.9226 54.54 0.9225 54.59	Sp.gr @20°C	% by Vol
0.9233 54.2 0.9232 54.25 0.9231 54.3 0.923 54.35 0.923 54.35 0.9229 54.39 0.9228 54.44 0.9227 54.49 0.9226 54.54 0.9225 54.59	0.9234	54.15
0.9232 54.25 0.9231 54.3 0.923 54.35 0.923 54.35 0.9229 54.39 0.9228 54.44 0.9227 54.49 0.9226 54.54 0.9225 54.59	0.9233	54.2
0.9231 54.3 0.923 54.35 0.9229 54.39 0.9228 54.44 0.9227 54.49 0.9226 54.54 0.9225 54.59	0.9232	54.25
0.92354.350.922954.390.922854.440.922754.490.922654.540.922554.59	0.9231	54.3
0.9229 54.39 0.9228 54.44 0.9227 54.49 0.9226 54.54 0.9225 54.59	0.923	54.35
0.9228 54.44 0.9227 54.49 0.9226 54.54 0.9225 54.59	0.9229	54.39
0.9227 54.49 0.9226 54.54 0.9225 54.59	0.9228	54.44
0.9226 54.54	0.9227	54.49
0 9225 54 59	0.9226	54.54
0.7225 51.57	0.9225	54.59
0.9224 54.63	0.9224	54.63
0.9223 54.68	0.9223	54.68
0.9222 54.73	0.9222	54.73
0.9221 54.78	0.9221	54.78
0.922 54.82	0.922	54.82
0.9219 54.87	0.9219	54.87
0.9218 54.92	0.9218	54.92
0.9217 54.97	0.9217	54.97
0.9216 55.01	0.9216	55.01
0.9215 55.06	0.9215	55.06
0.9214 55.11	0.9214	55.11
0.9213 55.16	0.9213	55.16
0.9212 55.2	0.9212	55.2
0.9211 55.25	0.9211	55.25
0.921 55.3	0.921	55.3

Sp.gr @20°C	% by Vol
0.9209	55.35
0.9208	55.39
0.9207	55.44
0.9206	55.49
0.9205	55.54
0.9204	55.58
0.9203	55.63
0.9202	55.68
0.9201	55.72
0.92	55.77
0.9199	55.82
0.9198	55.87
0.9197	55.91
0.9196	55.96
0.9195	56.01
0.9194	56.05
0.9193	56.1
0.9192	56.15
0.9191	56.19
0.919	56.24
0.9189	56.29
0.9188	56.33
0.9187	56.38
0.9186	56.43
0.9185	56.47

Sp.gr @20°C	% by Vol
0.9184	56.52
0.9183	56.57
0.9182	56.61
0.9181	56.66
0.918	56.71
0.9179	56.75
0.9178	56.8
0.9177	56.85
0.9176	56.9
0.9175	56.94
0.9174	56.99
0.9173	57.04
0.9172	57.08
0.9171	57.13
0.917	57.17
0.9169	57.22
0.9168	57.27
0.9167	57.31
0.9166	57.36
0.9165	57.41
0.9164	57.46
0.9163	57.5
0.9162	57.55
0.9161	57.59
0.916	57.64

Sp.gr @20°C	% by Vol
0.9159	57.69
0.9158	57.73
0.9157	57.78
0.9156	57.82
0.9155	57.87
0.9154	57.91
0.9153	57.96
0.9152	58
0.9151	58.05
0.915	58.1
0.9149	58.14
0.9148	58.19
0.9147	5823
0.9146	58.28
0.9145	58.32
0.9144	58.37
0.9143	58.41
0.9142	58.46
0.9141	58.5
0.914	58.55
0.9139	58.59
0.9138	58.64
0.9137	58.68
0.9136	58.73
0.9135	58.77
	1

Sp.gr @20°C	% by Vol
0.9134	58.82
0.9133	58.86
0.9132	58.91
0.9131	58.95
0.913	59
0.9129	59.04
0.9128	59.09
0.9127	59.13
0.9126	59.18
0.9125	59.22
0.9124	59.27
0.9123	59.31
0.9122	59.36
0.9121	59.4
0.912	59.45
0.9119	59.49
0.9118	59.54
0.9117	59.58
0.9116	59.63
0.9115	59.67
0.9114	59.72
0.9113	59.76
0.9112	59.8
0.9111	59.85
0.911	59.89

Sp.gr @20°C	% by Vol
0.9109	59.94
0.9108	59.98
0.9107	60.03
0.9106	60.07
0.9105	60.12
0.9104	60.16
0.9103	60.21
0.9102	60.25
0.9101	60.3
0.91	60.34
0.9099	60.38
0.9098	60.43
0.9097	60.47
0.9096	60.52
0.9095	60.56
0.9094	60.61
0.9093	60.65
0.9092	60.69
0.9091	60.74
0.909	60.78
0.9089	60.83
0.9088	60.87
0.9087	60.92
0.9086	60.96
0.9085	61

Sp.gr @20°C	% by Vol
0.9084	61.05
0.9083	61.09
0.9082	61.14
0.9081	61.18
0.908	61.22
0.9079	61.27
0.9078	61.31
0.9077	61.36
0.9076	61.4
0.9075	61.44
0.9074	61.49
0.9073	61.53
0.9072	61.58
0.9071	61.62
0.907	61.66
0.9069	61.71
0.9068	61.75
0.9067	61.79
0.9066	61.84
0.9065	61.88
0.9064	61.93
0.9063	61.97
0.9062	62.01
0.9061	62.06
0.906	62.1

Sp.gr @20°C	% by Vol
0.9059	62.14
0.9058	62.19
0.9057	62.23
0.9056	62.27
0.9055	62.32
0.9054	62.36
0.9053	62.4
0.9052	62.45
0.9051	62.49
0.905	62.53
0.9049	62.58
0.9048	62.62
0.9047	62.66
0.9046	62.71
0.9045	62.75
0.9044	62.8
0.9043	62.84
0.9042	62.88
0.9041	62.93
0.904	62.97
0.9039	63.01
0.9038	63.06
0.9037	63.10
0.9036	63.14
0.9035	63.19
0.9055	03.19

Sp.gr @20°C	% by Vol
0.9034	63.23
0.9033	63.27
0.9032	63.31
0.9031	63.36
0.903	63.4
0.9029	63.44
0.9028	63.49
0.9027	63.53
0.9026	63.57
0.9025	63.62
0.9024	63.66
0.9023	63.7
0.9022	63.75
0.9021	63.79
0.902	63.83
0.9019	63.88
0.9018	63.92
0.9017	63.96
0.9016	64
0.9015	64.05
0.9014	64.09
0.9013	64.13
0.9012	64.18
0.9011	64.22
0.901	64.26

Sp.gr @20°C	% by Vol
0.9009	64.3
0.9008	64.35
0.9007	64.39
0.9006	64.43
0.9005	64.47
0.9004	64.52
0.9003	64.56
0.9002	64.6
0.9001	64.65
0.9	64.69
0.8999	64.73
0.8998	64.77
0.8997	64.82
0.8996	64.86
0.8995	64.9
0.8994	64.94
0.8993	64.99
0.8992	65.03
0.8991	65.07
0.899	65.11
0.8989	65.16
0.8988	65.2
0.8987	65.24
0.8986	65.28
0.8985	65.32

Sp.gr @20°C	% by Vol
0.8984	65.37
0.8983	65.41
0.8982	65.45
0.8981	65.49
0.898	65.54
0.8979	65.58
0.8978	65.62
0.8977	65.66
0.8976	65.7
0.8975	65.75
0.8974	65.79
0.8973	65.83
0.8972	65.87
0.8971	65.91
0.897	65.96
0.8969	66
0.8968	66.04
0.8967	66.08
0.8966	66.12
0.8965	66.17
0.8964	66.21
0.8963	66.25
0.8962	66.29
0.8961	66.33
0.896	66.37

Sp.gr @20°C	% by Vol
0.8959	66.42
0.8958	66.46
0.8957	66.5
0.8956	66.54
0.8955	66.58
0.8954	66.62
0.8953	66.67
0.8952	66.71
0.8951	66.75
0.8950	66.79
0.8949	66.83
0.8948	66.87
0.8947	66.92
0.8946	66.96
0.8945	67
0.8944	67.04
0.8943	67.08
0.8942	67.12
0.8941	67.16
0.894	67.21
0.8939	67.25
0.8938	67.29
0.8937	67.33
0.8936	67.37
0.8935	67.41

Sp.gr @20°C	% by Vol
0.8934	67.45
0.8933	67.49
0.8932	67.54
0.8931	67.58
0.893	67.62
0.8929	67.66
0.8928	67.7
0.8927	67.74
0.8926	67.78
0.8925	67.82
0.8924	67.87
0.8923	67.91
0.8922	67.95
0.8921	67.99
0.892	68.43
0.8919	68.07
0.8918	68.11
0.8917	68.15
0.8916	68.19
0.8915	68.24
0.8914	68.28
0.8913	68.32
0.8912	68.36
0.8911	68.4
0.891	68.44

Sp.gr @20°C	% by Vol
0.8909	68.48
0.8908	68.52
0.8907	68.56
0.8906	68.6
0.8905	68.65
0.8904	68.69
0.8903	68.73
0.8902	68.77
0.8901	68.81
0.89	68.85
0.8899	68.89
0.8898	68.93
0.8897	68.97
0.8896	69.01
0.8895	69.05
0.8894	69.09
0.8893	69.13
0.8892	69.17
0.8891	69.22
0.889	69.26
0.8889	69.34
0.8887	69.38
0.8886	69.42
0.8885	69.46
0.8884	69.5

Sp.gr @20°C	% by Vol
0.8883	69.54
0.8882	69.58
0.8881	69.62
0.888	69.66
0.8879	69.7
0.8878	69.74
0.8877	69.78
0.8876	69.82
0.8875	69.86
0.8874	69.9
0.8873	69.94
0.8872	69.98
0.8871	70.02
0.887	70.06
0.8869	70.1
0.8868	70.14
0.8867	70.18
0.8866	70.22
0.8865	70.26
0.8864	70.3
0.8863	70.34
0.8862	70.38
0.8861	70.42
0.886	70.46
0.8859	70.5

117 | $M \circ M - A l c \circ h \circ l i c B e v e r a g e s$

Sp.gr @20°C	% by Vol
0.8858	70.54
0.8857	70.58
0.8856	70.62
0.8855	70.66
0.8854	70.7
0.8853	70.74
0.8852	70.78
0.8851	70.82
0.885	70.86
0.8849	70.9
0.8848	70.94
0.8847	70.98
0.8846	71.02
0.8845	71.06
0.8844	71.1
0.8843	71.14
0.8842	71.18
0.8841	71.22
0.884	71.26
0.8838	71.34
0.8837	71.38
0.8836	71.42
0.8835	71.46
0.8834	71.5
0.8833	71.54

Sp.gr @20°C	% by Vol
0.8832	71.58
0.8831	71.61
0.883	71.65
0.8829	71.69
0.8828	71.73
0.8827	71.77
0.8826	71.81
0.8825	71.85
0.8824	71.89
0.8823	71.93
0.8822	71.97
0.8821	72.01
0.882	72.05
0.8819	72.09
0.8818	72.12
0.8817	72.16
0.8816	72.2
0.8815	72.24
0.8814	72.28
0.8813	72.32
0.8812	72.36
0.8811	72.4
0.881	72.44
0.8809	72.48
0.8808	72.52

Sp.gr @20°C	% by Vol
0.8807	72.56
0.8806	72.59
0.8805	72.63
0.8804	72.67
0.8803	72.71
0.8802	72.75
0.8801	72.79
0.88	72.83
0.8799	72.87
0.8798	72.91
0.8797	72.95
0.8796	72.99
0.8795	73.02
0.8794	73.06
0.8793	73.1
0.8792	73.14
0.8791	73.18
0.879	73.22
0.8789	73.26
0.8788	73.3
0.8787	73.33
0.8786	73.37
0.8785	73.41
0.8784	73.45
0.8783	73.49

Sp.gr @20°C	% by Vol
0.8782	73.53
0.8781	73.57
0.878	73.61
0.8779	73.64
0.8778	73.68
0.8777	73.72
0.8776	73.76
0.8775	73.8
0.8774	73.84
0.8773	73.87
0.8772	73.91
0.8771	73.95
0.877	73.99
0.8769	74.03
0.8768	74.07
0.8767	74.11
0.8766	74.14
0.8765	74.18
0.8764	74.22
0.8763	74.26
0.8762	74.3
0.8761	74.34
0.876	74.37
0.8759	74.41
0.8758	74.45
I	

Sp.gr @20°C	% by Vol
0.8757	74.49
0.8756	74.53
0.8755	74.57
0.8754	74.6
0.8753	74.64
0.8752	74.68
0.8751	74.72
0.875	74.76
0.8749	74.8
0.8748	74.83
0.8747	74.87
0.8746	74.91
0.8745	74.95
0.8744	74.99
0.8743	75.03
0.8742	75.06
0.8741	75.1
0.874	75.14
0.8739	75.18
0.8738	75.22
0.8737	75.25
0.8736	75.29
0.8735	75.33
0.8734	75.37
0.8733	75.41

Sp.gr @20°C	% by Vol
0.8732	75.44
0.8731	75.48
0.873	75.52
0.8729	75.56
0.8728	75.6
0.8727	75.63
0.8726	75.67
0.8725	75.71
0.8724	75.75
0.8723	75.78
0.8722	75.82
0.8721	75.86
0.872	75.9
0.8719	75.93
0.8718	75.97
0.8717	76.01
0.8716	76.05
0.8715	76.09
0.8714	76.12
0.8713	76.16
0.8712	76.2
0.8711	76.24
0.871	76.27
0.8709	76.31
0.8708	76.35

119 | $M \circ M - A l c \circ h \circ l i c B e v e r a g e s$

Sp.gr @20°C	% by Vol
0.8707	76.39
0.8706	76.42
0.8705	76.46
0.8704	76.5
0.8703	76.54
0.8702	76.57
0.8701	76.61
0.87	76.65
0.8699	76.68
0.8698	76.72
0.8697	76.76
0.8696	76.8
0.8695	76.83
0.8694	76.87
0.8693	76.91
0.8692	76.94
0.8691	76.98
0.869	77.02
0.8689	77.06
0.8688	77.09
0.8687	77.13
0.8686	77.17
0.8685	77.2
0.8684	77.24
0.8683	77.28

Sp.gr @20°C	% by Vol
0.8682	77.32
0.8681	77.35
0.868	77.39
0.8679	77.43
0.8678	77.46
0.8677	77.5
0.8676	77.54
0.8675	77.57
0.8674	77.61
0.8673	77.65
0.8672	77.68
0.8671	77.72
0.867	77.76
0.8669	77.79
0.8668	77.83
0.8667	77.87
0.8666	77.9
0.8665	77.94
0.8664	77.98
0.8663	78.01
0.8662	78.45
0.8661	78.09
0.8643	78.12
0.8659	78.16
0.8658	78.2
.	

0.8657 78.23 0.8656 78.27 0.8655 78.31 0.8654 78.34 0.8653 78.38 0.8653 78.38 0.8652 78.42 0.8651 78.45 0.865 78.49 0.865 78.49 0.865 78.49 0.8649 78.52 0.8648 78.66 0.8645 78.67 0.8644 78.71 0.8645 78.67 0.8643 78.74 0.8644 78.71 0.8643 78.78 0.8641 78.82 0.8641 78.82 0.8637 78.96 0.8638 78.93 0.8636 79 0.8637 79.03 0.8633 79.11 0.8633 79.11 0.8633 79.22 0.8623 79.47 0.8625 79.4 0.8626 79.32 <	Sp.gr @20°C	% by Vol
0.8656 78.27 0.8655 78.31 0.8655 78.34 0.8653 78.38 0.8653 78.38 0.8652 78.42 0.8651 78.45 0.865 78.49 0.865 78.49 0.8649 78.52 0.8648 78.66 0.8646 78.63 0.8646 78.63 0.8645 78.67 0.8644 78.71 0.8643 78.74 0.8642 78.78 0.8641 78.82 0.8641 78.85 0.8637 78.96 0.8636 79 0.8637 78.96 0.8633 79.11 0.8633 79.11 0.8631 79.22 0.8628 79.29 0.8628 79.29 0.8626 79.36 0.8625 79.4 0.8623 79.47	0.8657	78.23
0.8655 78.31 0.8654 78.34 0.8653 78.38 0.8653 78.38 0.8652 78.42 0.8651 78.45 0.865 78.49 0.865 78.49 0.8649 78.52 0.8648 78.56 0.8647 78.6 0.8645 78.67 0.8645 78.67 0.8644 78.71 0.8643 78.74 0.8642 78.78 0.8641 78.82 0.8641 78.82 0.863 79.33 0.8636 79 0.8636 79 0.8637 78.96 0.8636 79 0.8631 79.11 0.8633 79.11 0.8631 79.18 0.8627 79.32 0.8626 79.43 0.8623 79.47	0.8656	78.27
0.8654 78.34 0.8653 78.38 0.8652 78.42 0.8651 78.45 0.865 78.49 0.865 78.49 0.865 78.49 0.8649 78.52 0.8648 78.56 0.8647 78.6 0.8646 78.63 0.8645 78.67 0.8644 78.71 0.8643 78.74 0.8643 78.74 0.8643 78.74 0.8641 78.82 0.8632 78.89 0.8638 78.93 0.8637 78.96 0.8636 79 0.8637 78.96 0.8633 79.11 0.8633 79.11 0.8633 79.13 0.8631 79.18 0.8623 79.25 0.8628 79.29 0.8627 79.32 0.8625 79.4 0.8624 79.43 <t< td=""><td>0.8655</td><td>78.31</td></t<>	0.8655	78.31
0.8653 78.38 0.8652 78.42 0.8651 78.45 0.865 78.49 0.865 78.49 0.8649 78.52 0.8648 78.56 0.8647 78.6 0.8646 78.63 0.8645 78.67 0.8644 78.71 0.8643 78.74 0.8643 78.78 0.8644 78.78 0.8641 78.82 0.8642 78.78 0.8643 78.93 0.8634 78.93 0.8635 79.03 0.8636 79 0.8637 78.96 0.8636 79 0.8637 79.03 0.8633 79.11 0.8634 79.07 0.8633 79.13 0.8633 79.22 0.8629 79.25 0.8628 79.29 0.8625 79.4 0.8625 79.4	0.8654	78.34
0.8652 78.42 0.8651 78.45 0.865 78.49 0.8649 78.52 0.8648 78.56 0.8647 78.6 0.8646 78.63 0.8645 78.67 0.8644 78.71 0.8643 78.74 0.8643 78.78 0.8644 78.71 0.8643 78.78 0.8644 78.78 0.8642 78.78 0.8643 78.82 0.8644 78.85 0.8639 78.89 0.8638 78.93 0.8637 78.96 0.8636 79 0.8635 79.03 0.8635 79.03 0.8633 79.11 0.8633 79.14 0.8631 79.18 0.8623 79.25 0.8626 79.32 0.8627 79.32 0.8626 79.36 0.8625 79.47 <td>0.8653</td> <td>78.38</td>	0.8653	78.38
0.8651 78.45 0.865 78.49 0.8649 78.52 0.8648 78.56 0.8647 78.6 0.8646 78.63 0.8645 78.67 0.8644 78.71 0.8643 78.74 0.8643 78.74 0.8643 78.78 0.8641 78.82 0.8642 78.78 0.8643 78.93 0.8639 78.89 0.8638 78.93 0.8636 79 0.8637 78.96 0.8636 79 0.8637 78.96 0.8633 79.11 0.8634 79.07 0.8633 79.11 0.8631 79.18 0.8632 79.14 0.8633 79.22 0.8628 79.29 0.8627 79.32 0.8626 79.36 0.8625 79.4 0.8624 79.43 <tr< td=""><td>0.8652</td><td>78.42</td></tr<>	0.8652	78.42
0.865 78.49 0.8649 78.52 0.8648 78.56 0.8647 78.6 0.8646 78.63 0.8645 78.67 0.8644 78.71 0.8643 78.74 0.8642 78.78 0.8641 78.82 0.864 78.85 0.8639 78.89 0.8638 78.93 0.8636 79 0.8636 79 0.8637 78.96 0.8636 79 0.8633 79.11 0.8634 79.07 0.8631 79.18 0.863 79.22 0.8629 79.25 0.8628 79.29 0.8625 79.4 0.8625 79.47	0.8651	78.45
$\begin{array}{c ccccc} 0.8649 & 78.52 \\ \hline 0.8648 & 78.56 \\ \hline 0.8647 & 78.6 \\ \hline 0.8646 & 78.63 \\ \hline 0.8645 & 78.67 \\ \hline 0.8644 & 78.71 \\ \hline 0.8643 & 78.74 \\ \hline 0.8642 & 78.78 \\ \hline 0.8641 & 78.82 \\ \hline 0.8641 & 78.82 \\ \hline 0.8639 & 78.89 \\ \hline 0.8639 & 78.89 \\ \hline 0.8638 & 78.93 \\ \hline 0.8636 & 79 \\ \hline 0.8635 & 79.03 \\ \hline 0.8635 & 79.03 \\ \hline 0.8633 & 79.11 \\ \hline 0.8632 & 79.14 \\ \hline 0.8631 & 79.18 \\ \hline 0.8631 & 79.18 \\ \hline 0.8623 & 79.22 \\ \hline 0.8628 & 79.29 \\ \hline 0.8626 & 79.36 \\ \hline 0.8626 & 79.36 \\ \hline 0.8624 & 79.43 \\ \hline 0.8623 & 79.47 \\ \hline \end{array}$	0.865	78.49
$\begin{array}{c ccccc} 0.8648 & 78.56 \\ \hline 0.8647 & 78.6 \\ \hline 0.8646 & 78.63 \\ \hline 0.8645 & 78.67 \\ \hline 0.8645 & 78.67 \\ \hline 0.8644 & 78.71 \\ \hline 0.8643 & 78.74 \\ \hline 0.8642 & 78.78 \\ \hline 0.8641 & 78.82 \\ \hline 0.8641 & 78.82 \\ \hline 0.8639 & 78.89 \\ \hline 0.8639 & 78.89 \\ \hline 0.8638 & 78.93 \\ \hline 0.8636 & 79 \\ \hline 0.8636 & 79 \\ \hline 0.8635 & 79.03 \\ \hline 0.8635 & 79.03 \\ \hline 0.8633 & 79.11 \\ \hline 0.8632 & 79.14 \\ \hline 0.8631 & 79.18 \\ \hline 0.8633 & 79.22 \\ \hline 0.8629 & 79.25 \\ \hline 0.8628 & 79.29 \\ \hline 0.8626 & 79.36 \\ \hline 0.8625 & 79.4 \\ \hline 0.8624 & 79.43 \\ \hline 0.8623 & 79.47 \\ \hline \end{array}$	0.8649	78.52
$\begin{array}{c ccccc} 0.8647 & 78.6 \\ \hline 0.8646 & 78.63 \\ \hline 0.8645 & 78.67 \\ \hline 0.8644 & 78.71 \\ \hline 0.8643 & 78.74 \\ \hline 0.8642 & 78.78 \\ \hline 0.8641 & 78.82 \\ \hline 0.8641 & 78.82 \\ \hline 0.8639 & 78.89 \\ \hline 0.8639 & 78.89 \\ \hline 0.8638 & 78.93 \\ \hline 0.8636 & 79 \\ \hline 0.8636 & 79 \\ \hline 0.8635 & 79.03 \\ \hline 0.8635 & 79.03 \\ \hline 0.8633 & 79.11 \\ \hline 0.8632 & 79.14 \\ \hline 0.8631 & 79.18 \\ \hline 0.8633 & 79.22 \\ \hline 0.8628 & 79.29 \\ \hline 0.8628 & 79.29 \\ \hline 0.8626 & 79.36 \\ \hline 0.8624 & 79.43 \\ \hline 0.8623 & 79.47 \\ \hline \end{array}$	0.8648	78.56
$\begin{array}{c ccccc} 0.8646 & 78.63 \\ \hline 0.8645 & 78.67 \\ \hline 0.8644 & 78.71 \\ \hline 0.8643 & 78.74 \\ \hline 0.8642 & 78.78 \\ \hline 0.8641 & 78.82 \\ \hline 0.8641 & 78.82 \\ \hline 0.8639 & 78.89 \\ \hline 0.8639 & 78.89 \\ \hline 0.8638 & 78.93 \\ \hline 0.8636 & 79 \\ \hline 0.8636 & 79 \\ \hline 0.8635 & 79.03 \\ \hline 0.8635 & 79.03 \\ \hline 0.8634 & 79.07 \\ \hline 0.8633 & 79.11 \\ \hline 0.8632 & 79.14 \\ \hline 0.8631 & 79.18 \\ \hline 0.8631 & 79.18 \\ \hline 0.8623 & 79.22 \\ \hline 0.8626 & 79.32 \\ \hline 0.8626 & 79.36 \\ \hline 0.8624 & 79.43 \\ \hline 0.8623 & 79.47 \\ \hline \end{array}$	0.8647	78.6
$\begin{array}{c cccccc} 0.8645 & 78.67 \\ \hline 0.8644 & 78.71 \\ \hline 0.8643 & 78.74 \\ \hline 0.8642 & 78.78 \\ \hline 0.8641 & 78.82 \\ \hline 0.8641 & 78.82 \\ \hline 0.8639 & 78.89 \\ \hline 0.8639 & 78.89 \\ \hline 0.8638 & 78.93 \\ \hline 0.8636 & 79 \\ \hline 0.8636 & 79 \\ \hline 0.8635 & 79.03 \\ \hline 0.8635 & 79.03 \\ \hline 0.8633 & 79.11 \\ \hline 0.8632 & 79.14 \\ \hline 0.8631 & 79.18 \\ \hline 0.8631 & 79.18 \\ \hline 0.8623 & 79.22 \\ \hline 0.8628 & 79.29 \\ \hline 0.8628 & 79.29 \\ \hline 0.8626 & 79.36 \\ \hline 0.8624 & 79.43 \\ \hline 0.8623 & 79.47 \\ \hline \end{array}$	0.8646	78.63
$\begin{array}{c cccccc} 0.8644 & 78.71 \\ \hline 0.8643 & 78.74 \\ \hline 0.8642 & 78.78 \\ \hline 0.8641 & 78.82 \\ \hline 0.8641 & 78.82 \\ \hline 0.8639 & 78.89 \\ \hline 0.8639 & 78.89 \\ \hline 0.8638 & 78.93 \\ \hline 0.8638 & 78.93 \\ \hline 0.8636 & 79 \\ \hline 0.8636 & 79 \\ \hline 0.8635 & 79.03 \\ \hline 0.8635 & 79.03 \\ \hline 0.8634 & 79.07 \\ \hline 0.8633 & 79.11 \\ \hline 0.8632 & 79.14 \\ \hline 0.8631 & 79.18 \\ \hline 0.8631 & 79.18 \\ \hline 0.8623 & 79.22 \\ \hline 0.8628 & 79.29 \\ \hline 0.8627 & 79.32 \\ \hline 0.8626 & 79.36 \\ \hline 0.8624 & 79.43 \\ \hline 0.8623 & 79.47 \\ \hline \end{array}$	0.8645	78.67
$\begin{array}{c cccccc} 0.8643 & 78.74 \\ \hline 0.8642 & 78.78 \\ \hline 0.8641 & 78.82 \\ \hline 0.8641 & 78.82 \\ \hline 0.8639 & 78.89 \\ \hline 0.8639 & 78.89 \\ \hline 0.8638 & 78.93 \\ \hline 0.8637 & 78.96 \\ \hline 0.8636 & 79 \\ \hline 0.8636 & 79 \\ \hline 0.8635 & 79.03 \\ \hline 0.8634 & 79.07 \\ \hline 0.8633 & 79.11 \\ \hline 0.8632 & 79.14 \\ \hline 0.8631 & 79.18 \\ \hline 0.8631 & 79.18 \\ \hline 0.8623 & 79.22 \\ \hline 0.8628 & 79.29 \\ \hline 0.8628 & 79.29 \\ \hline 0.8626 & 79.36 \\ \hline 0.8624 & 79.43 \\ \hline 0.8623 & 79.47 \\ \hline \end{array}$	0.8644	78.71
$\begin{array}{c cccccc} 0.8642 & 78.78 \\ \hline 0.8641 & 78.82 \\ \hline 0.8641 & 78.82 \\ \hline 0.8639 & 78.89 \\ \hline 0.8639 & 78.93 \\ \hline 0.8638 & 78.93 \\ \hline 0.8637 & 78.96 \\ \hline 0.8636 & 79 \\ \hline 0.8636 & 79 \\ \hline 0.8635 & 79.03 \\ \hline 0.8634 & 79.07 \\ \hline 0.8633 & 79.11 \\ \hline 0.8632 & 79.14 \\ \hline 0.8631 & 79.18 \\ \hline 0.8631 & 79.18 \\ \hline 0.8633 & 79.22 \\ \hline 0.8629 & 79.25 \\ \hline 0.8628 & 79.29 \\ \hline 0.8627 & 79.32 \\ \hline 0.8626 & 79.36 \\ \hline 0.8624 & 79.43 \\ \hline 0.8623 & 79.47 \\ \hline \end{array}$	0.8643	78.74
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	0.8642	78.78
$\begin{array}{c ccccc} 0.864 & 78.85 \\ \hline 0.8639 & 78.89 \\ \hline 0.8638 & 78.93 \\ \hline 0.8638 & 78.93 \\ \hline 0.8637 & 78.96 \\ \hline 0.8636 & 79 \\ \hline 0.8635 & 79.03 \\ \hline 0.8634 & 79.07 \\ \hline 0.8633 & 79.11 \\ \hline 0.8632 & 79.14 \\ \hline 0.8631 & 79.18 \\ \hline 0.8631 & 79.18 \\ \hline 0.8633 & 79.22 \\ \hline 0.8629 & 79.25 \\ \hline 0.8628 & 79.29 \\ \hline 0.8627 & 79.32 \\ \hline 0.8626 & 79.36 \\ \hline 0.8625 & 79.4 \\ \hline 0.8623 & 79.47 \\ \hline \end{array}$	0.8641	78.82
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	0.864	78.85
0.8638 78.93 0.8637 78.96 0.8636 79 0.8635 79.03 0.8634 79.07 0.8633 79.11 0.8632 79.14 0.8631 79.22 0.8629 79.25 0.8628 79.29 0.8626 79.32 0.8625 79.4 0.8624 79.43 0.8623 79.47	0.8639	78.89
$\begin{array}{c ccccc} 0.8637 & 78.96 \\ \hline 0.8636 & 79 \\ \hline 0.8635 & 79.03 \\ \hline 0.8635 & 79.03 \\ \hline 0.8634 & 79.07 \\ \hline 0.8633 & 79.11 \\ \hline 0.8632 & 79.14 \\ \hline 0.8631 & 79.18 \\ \hline 0.8631 & 79.18 \\ \hline 0.863 & 79.22 \\ \hline 0.8629 & 79.25 \\ \hline 0.8628 & 79.29 \\ \hline 0.8628 & 79.29 \\ \hline 0.8626 & 79.36 \\ \hline 0.8625 & 79.4 \\ \hline 0.8624 & 79.43 \\ \hline 0.8623 & 79.47 \\ \hline \end{array}$	0.8638	78.93
0.8636 79 0.8635 79.03 0.8634 79.07 0.8633 79.11 0.8632 79.14 0.8631 79.18 0.863 79.22 0.8629 79.25 0.8628 79.32 0.8626 79.36 0.8625 79.4 0.8624 79.43 0.8623 79.47	0.8637	78.96
0.8635 79.03 0.8634 79.07 0.8633 79.11 0.8632 79.14 0.8631 79.18 0.863 79.22 0.8629 79.25 0.8627 79.32 0.8626 79.36 0.8625 79.4 0.8624 79.43 0.8623 79.47	0.8636	79
0.8634 79.07 0.8633 79.11 0.8632 79.14 0.8631 79.18 0.863 79.22 0.8629 79.25 0.8628 79.29 0.8626 79.32 0.8625 79.4 0.8624 79.43 0.8623 79.47	0.8635	79.03
0.8633 79.11 0.8632 79.14 0.8631 79.18 0.863 79.22 0.8629 79.25 0.8628 79.29 0.8627 79.32 0.8625 79.4 0.8624 79.43 0.8623 79.47	0.8634	79.07
0.8632 79.14 0.8631 79.18 0.863 79.22 0.8629 79.25 0.8628 79.29 0.8627 79.32 0.8626 79.36 0.8625 79.4 0.8623 79.47	0.8633	79.11
0.863179.180.86379.220.862979.250.862879.290.862779.320.862679.360.862579.40.862479.430.862379.47	0.8632	79.14
0.863 79.22 0.8629 79.25 0.8628 79.29 0.8627 79.32 0.8626 79.36 0.8625 79.4 0.8623 79.47	0.8631	79.18
0.8629 79.25 0.8628 79.29 0.8627 79.32 0.8626 79.36 0.8625 79.4 0.8624 79.43 0.8623 79.47	0.863	79.22
0.8628 79.29 0.8627 79.32 0.8626 79.36 0.8625 79.4 0.8624 79.43 0.8623 79.47	0.8629	79.25
0.8627 79.32 0.8626 79.36 0.8625 79.4 0.8624 79.43 0.8623 79.47	0.8628	79.29
0.8626 79.36 0.8625 79.4 0.8624 79.43 0.8623 79.47	0.8627	79.32
0.8625 79.4 0.8624 79.43 0.8623 79.47	0.8626	79.36
0.8624 79.43 0.8623 79.47	0.8625	79.4
0.8623 79.47	0.8624	79.43
· ·	0.8623	79.47

Sp.gr @20°C	% by Vol
0.8622	79.5
0.8621	79.54
0.862	79.58
0.8619	79.61
0.8618	79.65
0.8617	79.68
0.8616	79.72
0.8615	79.76
0.8614	79.79
0.8613	79.83
0.8612	79.86
0.8611	79.9
0.861	79.94
0.8609	79.97
0.8608	80.01
0.8607	80.04
0.8606	80.08
0.8605	80.12
0.8604	80.15
0.8603	80.19
0.8602	80.22
0.8601	80.26
0.86	80.29
0.8599	80.33
0.8598	80.36
0.8597	80.4
0.8596	80.44
0.8595	80.47
0.8594	80.51
0.8593	80.54
0.8592	80.58
0.8591	80.61
0.859	80.65
0.8589	80.68
0.8588	80.72
0.8587	80.76
0.8586	80.79
0.8585	80.83

Sp.gr @20°C	% by Vol
0.8584	80.86
0.8583	80.9
0.8582	80.93
0.8581	80.97
0.858	81
0.8579	81.04
0.8578	81.07
0.8577	81.11
0.8576	81.14
0.8575	81.18
0.8574	81.21
0.8573	81.25
0.8572	81.28
0.8571	81.32
0.857	81.35
0.8569	81.39
0.8568	81.43
0.8567	81.46
0.8566	81.5
0.8565	81.53
0.8564	81.57
0.8563	81.6
0.8562	81.64
0.8561	81.67
0.856	81.71
0.8559	81.74
0.8558	81.78
0.8557	81.81
0.8556	81.85
0.8555	81.88
0.8554	81.92
0.8553	81.95
0.8552	81.99
0.8551	82.02
0.85	83.78
0.8499	83.82
0.8498	83.85
0.8497	83.88

Sp.gr @20°C	% by Vol
0.8496	83.92
0.8495	83.95
0.8494	83.99
0.8493	84.02
0.8492	84.05
0.8491	84.09
0.849	84.12
0.8489	84.15
0.8488	84.19
0.8487	84.22
0.8486	84.26
0.8485	84.29
0.8484	84.32
0.8483	84.36
0.8482	84.39
0.8481	84.42
0.848	84.46
0.8479	84.49
0.8478	84.53
0.8477	84.56
0.8476	84.59
0.8475	84.63
0.8474	84.66
0.8473	84.69
0.8472	84.73
0.8471	84.76
0.847	84.79
0.8469	84.83
0.8468	84.86
0.8467	84.90
0.8466	84.93
0.8465	84.96
0.8464	85.00
0.8463	85.03
0.8462	85.06
0.8461	85.10
0.846	85.13
0.8459	85.16

Sp.gr @20°C	% by Vol
0.8458	85.2
0.8457	85.23
0.8456	85.26
0.8455	8530
0.8454	85.33
0.8453	85.36
0.8452	85.40
0.8451	85.43
0.845	85.46
0.8449	85.49
0.8448	85.53
0.8447	85.56
0.8446	85.59
0.8445	85.63
0.8444	85.66
0.8443	85.69
0.8442	85.73
0.8441	85.76
0.8440	85.79
0.8439	85.82
0.8438	85.86
0.8437	85.89
0.8436	85.92
0.8435	85.95
0.8434	85.99
0.8433	86.02
0.8432	86.05
0.8431	86.08
0.843	86.12
0.8429	86.15
0.8428	86.18
0.8427	86.22
0.8426	86.25
0.8425	86.28
0.8424	86.31
0.8423	86.35
0.8422	86.38
0.8421	86.41

Sp.gr @20°C	% by Vol
0.842	86.44
0.8419	86.48
0.8418	86.51
0.8417	86.54
0.8416	86.57
0.8415	86.61
0.8414	86.64
0.8413	86.67
0.8412	86.7
0.8411	86.74
0.841	86.77
0.8409	86.8
0.8408	86.83
0.8407	86.87
0.8406	86.9
0.8405	86.93
0.8404	86.96
0.8403	87
8402	87.03
0.8401	87.06
0.84	87.09
0.8399	87.13
0.8398	87.16
0.8397	87.19
0.8396	87.22
0.8395	87.26
0.8394	87.29
0.8393	87.32
0.8392	87.35
0.8391	87.38
0.839	87.42
0.8389	87.45
0.8388	87.48
0.8387	87.51
0.8386	87.55
0.8385	87.58
0.8384	87.61
0.8383	87.64

Sp.gr @20°C	% by Vol
0.8382	87.67
0.8381	87.71
0.838	87.74
0.8379	87.77
0.8378	87.8
0.8377	87.83
0.8376	87.86
0.8375	87.90
0.8374	87.93
0.8373	87.96
0.8372	87.99
0.8371	88.02
0.837	88.06
0.8369	88.09
0.8368	88.12
0.8367	88.15
0.8366	88.18
0.8365	88.21
0.8364	88.24
0.8363	88.28
0.8362	88.31
0.8361	88.34
0.836	88.37
0.8359	88.4
0.8358	88.43
0.8357	88.47
0.8356	88.5
0.8355	88.53
0.8354	88.56
0.8353	88.59
0.8352	88.62
0.8351	88.65
0.835	88.68
0.8349	88.72
0.8348	88.75
0.8347	88.78
0.8346	88.81
0.8345	88.84

Sp.gr @20°C	% by Vol				
0.8344	88.87				
0.8343	88.9				
0.8342	88.93				
0.8341	88.96				
0.834	89				
0.8339	89.03				
0.8338	89.06				
0.8337	89.09				
0.8336	89.12				
0.8335	89.15				
0.8334	89.18				
0.8333	89.21				
0.8332	89.24				
0.8331	89.27				
0.833	89.3				
0.8329	89.33				
0.8328	89.37				
0.8327	89.4				
0.8326	89.43				
0.8325	89.46				
0.8324	89.49				
0.8323	89.52				
0.8322	89.55				
0.8321	89.58				
0.832	89.61				
0.8319	89.64				
0.8318	89.67				
0.8317	89.7				
0.8316	89.73				
0.8315	89.76				
0.8314	89.79				
0.8313	89.82				
0.8312	89.85				
0.8311	89.88				
0.831	89.91				
0.8309	89.94				
0.8308	89.97				
0.8307	90				

Sp.gr @20°C	% by Vol
0.8306	90.04
0.8305	90.07
0.8304	90.1
0.8303	90.13
0.8302	90.16
0.8301	90.19
0.825	91.69
0.8249	91.72

ANNEXURE-II

wt %	Temperature (degC)			Temperature (degC) Wt %	wt%	Temperature (degC)			
Ethanol	20	25	30	35	Ethanol	20	25	30	35
0	0.99923	0.99709	0.99568	0.99406	50	0.91384	0 90995	0.90590	0.90169
1	0.99636	0.9952	0.99379	0.99217	51	0.91160	0.90760	0.90353	0.89940
2	0.99453	0.99336	0.99194	0.99031	57	0.90936	0.90534	D 90125	0.89710
3	0.99275	0.99157	0.99014	0.98849	53	0.90711	0.90307	89898 n	0.89479
4	0.99103	0.98984	0.98839	0.98672	54	0.90485	0.90079	0.89667	0.89248
100				and the second	120				
5	0.98938	0.98817	0.98679	0.98501	55	0.90258	0.89850	0.89437	0.89016
6	0.9878	0,98656	0.98507	0.98335	56	0.90031	0.89621	0.89206	0.88784
1	0.98627	0.98500	0.98347	0.98172	57	0.89803	0.89392	0.88975	0.88552
8	0.98478	0,98346	0.98189	0.98009	58	0.89574	0.89162	0.88744	0.88319
9	0.98331	0.98193	0.98031	0.97846	29	0.89344	0.88931	0.88512	0.88085
10	0.98187	0.98043	0.97875	0.97685	60	0.89113	0.88699	0.88278	0.87851
11	0.98047	0.97897	0.97723	0.97527	61	0.88882	0.88446	0.88044	0.87615
12	0.97910	0.97753	0.97573	0.97371	62	0.88650	0.88233	0.87809	0.87379
13	0.97775	0.97661	0.97424	0.97216	63	0.88417	0.87998	0.87574	0.87142
14	0.97643	0.97472	0.97278	0.97063	64	0.88183	0.87763	0.87337	0.86905
15	0.97514	0.97334	0.97133	0.96911	65	0.87948	0.87527	0.87100	0.86667
16	0.97387	0.97199	0.96990	0.9676	66	0.87713	0.87291	0.86863	0.86429
17	0.97259	0.97062	0.96844	0.96607	67	0.87477	0.87054	0.86625	0.86190
18	0.97129	0.96923	0.96697	0.96452	68	0.87241	0.86817	0.86387	0.85950
19	0.96997	0.96782	0.96547	0.96294	69	0.87004	0.86579	0.86148	0.85710
20	0.96864	0 96639	0.96395	0.96134	70	0.86766	0.96340	0.85908	0.85470
21	0.96729	0.96495	0.96242	0.96973	71	0.86527	0.86100	0.85667	0.85228
22	0.96592	0.96348	0.96087	0.95809	72	0.86287	0.85859	0.85426	0.84986
23	0.96453	0.96199	0.95929	0.95643	73	0.86047	0.85618	0.85184	0.84743
24	0.96312	0.96048	0.95769	0.95476	74	0.85806	0.85376	0.84941	0.84500
25	0.06460	0.05005	0.05807	0.05206	75	0.05564	0.051.04	0.04600	0.04367
23	0.96196	0.95895	0.95607	0.95306	76	0.05004	0.00134	0.04050	0.04257
20	0.95967	0.95578	0.95272	0.93195	70	0.85079	0.84647	0.84711	0.84715
28	0.95710	0.95410	0.95098	0.95774	78	0.84835	0.84403	0.83966	0.83523
29	0.95548	0.95241	0.94922	0.94590	79	0.84590	0.84158	0.83720	0.83277
1000									
30	0.96382	0.96067	0.94741	0.94403	08	0.84344	0.83911	0.83473	0.83029
31	0.95212	0.94890	0.94557	0.94214	81	0.84096	0.83664	0.83224	0.82780
32	0.95038	0.94709	0.94370	0.94021	02	0.83848	0.83415	0.82974	0.82530
33	0.94600	0.94525	0.94160	0.93020	94	0.03099	0.03104	0.02/24	0.02239
	0.0407.0	0.04007	0.05000	0.55020	Sere 1	0.00040	0.02013	0.02475	0.02027
35	0.94494	0.94146	0.93790	0.93425	85	0.83095	0.82660	0.82220	0.81774
36	0.94306	0.93952	0.93591	0.93221	86	0.82840	0.82405	0.81965	0.81519
37	0.94114	0.93756	0.93390	0.93016	87	0.82583	0.82148	0.81708	0.81262
38	0.93919	0.93556	0.93186	0.92808	88	0.82323	0.81888	0.81448	0.81003
39	0.93720	0.93353	0.92979	0.92597	89	0.82062	0.81626	0.81186	0.80742
40	0.93518	0.93148	0.92770	0.92385	90	0.81797	0.81362	0.80922	0.80478
41	0.93314	0.92940	0.92558	0.92170	91	0.81529	0.81094	0.80655	0.80211
42	0.93107	0.92729	0.92344	0.91952	92	0.81257	0.80823	0.80384	0.79941
43	0.92897	0.92516	0.92128	0.91733	93	0.80983	0.80549	0.80111	0.79669
44	0.92685	0.92301	0.91910	0.91513	94	0.80705	0.80272	0.79835	0.79393
45	0.92472	0.92085	0.91692	0.91291	95	0.80424	0.79991	0.79555	0.79114
46	0.92257	0.91868	0.91472	0.91069	96	0.80138	0.79706	0.79271	0.79831
47	0.92041	0.91649	0.91250	0.90845	97	0.79846	0.79415	0.78991	0.78542
48	0.91823	0.91426	0.91028	0.90621	98	0.79547	0.79117	0.78684	0.78247
49	0.91604	0.91208	0.90805	0.90396	99	0.79543	0.78814	0.78382	0.77946
					100	0.78934	0.78506	0.78075	0,77641

CONCENTRATION (IN WEIGHT %) OF ETHANOL-WATER MIXTURE VS. SPECIFIC GRAVITY AT VARIOUS TEMPERATURE

NOTE: Numbers obtained from Table 3-110 (Pg.3.89) "Perry's Chemical Engineers' Handbook", 6th Ed.

RAPID ANALYTICAL FOOD TESTING (RAFT) KIT/ EQUIPMENT

Alternate Rapid kits/equipment may be used to get quick results for screening and surveillance purposes, provided the kit/equipment is approved by FSSA(I). Details of the rapid food testing kit/ equipment approved by FSSA(I) are available at https://www.fssai.gov.in/cms/raft.php

Food Safety and Standards Authority of India (Ministry of Health and Family Welfare) FDA Bhawan, Kotla Road, New Delhi-110002 www.fssai.gov.in For any query contact: sp-sampling@fssai.gov.in