File No.: 11014/02/2021-QA Food Safety and Standards Authority of India (A statutory Authority established under the Food Safety and Standards Act, 2006) (Quality Assurance Division)

FDA Bhawan, Kotla Road, New Delhi – 110002

Dated, the loth June 2022

ORDER

Subject: Method for Determination of Niacin in Foodstuffs

The Food Authority has approved the "Method for determination of niacin in food stuff" (Annexure-1) in its 38th meeting held on 02.03.2022.

2. The food testing laboratories are hereby requested to use the aforesaid method with immediate effect.

3. Any issue related to these methods may be forwarded to the Scientific Panel On Methods of Sampling and Analysis for its consideration at email: <u>sp-</u>sampling@fssai.gov.in.

(Dr. Harinder Singh Oberoi) Advisor (QA)

Enclosed: Method

To:

- i. All FSSAI notified Laboratories
- ii. All State Food Testing Laboratories
- iii. IT Division for uploading on the FSSAI website

FOOD SAFETY AND STANDARDS AUTHORITY OF INDIA Inspiring Trust, Assuring Safe & Nutritious Food Ministry of Health and Family Welfare, Government of India		Method for	Determination of Niacin i	n foodstuffs
Method No.		01	Revision No. & Date	10 th June 2022
Scope	•	This is a method for foodstuffs by high different ways of bioavailable), (B) a 1 and 2 (The method fortified and non- chocolate cereals, of ham, lyophilized s flour, at levels from In options A niace nicotinic acid, and Option B gives hig cereals, but similar calculated and ex nicotinamide into a Option A is faster Option B quantific liberate other form foods such as maize The niacin content ranged from a low and oat flakes (0.44 barley: 0.99, whea niacin content with fold the value m general, the niacin obtained after the values reported in niacin but total nia	br the determination of the m performance liquid chromate hydrolysis, (A) acid hyd acid/alkaline hydrolysis (Tot hod has been validated in i fortified samples such as b cooked ham, green peas, lyo oup, nutritive orange juice, n 0.5 mg/100 g to 24 mg/100 cin is calculated as the sum expressed as nicotinic acid. ther results than A for niacin ar results for other products pressed as nicotinic acid nicotinic acid. and cheaper than B. es total niacin. The alkalin ns giving higher results for e and cereals are not normall (mg/100 g dry weight) obtai f level in corn flour (0.26), v 8), to a higher level in whol t: 0.88), wheat bran (2.7) and the acid–alkaline hydrolysis easured after extraction w content found in the databas acid–alkaline extraction, su the databases may not refl cin.	hass fraction of niacin in ography (HPLC) by two rolysis (bioaccessible / cal) based on References nter laboratory tests on reakfast cereal powder, philized green peas with milk powder and wheat 0 g). m of nicotinamide and with non-supplemented . In option B, niacin is after transformation of he hydrolysis is able to niacin, which in some by biologically available. ned with acid hydrolysis white wheat flour (0.45) egrain flours (rye: 0.79, d wheat germ (2.7). The s, however, was $1.9 - 11$ - ith acid hydrolysis. In es is closer to the results ggesting that the niacin ect actual bioaccessible
Caution	1.	Hydrochloric acid	d: It is a hazardous liquid with the second secon	which must be used with
		mists that are also	dangerous. If the acid or mist	t, come into contact with
		the skin, eyes, or in	iternal organs, the damage ca	n be irreversible or even
		fatal in severe case	es.	
	2.	Acetic acid: Aceti	c acid can be a hazardous c	hemical if not used in a
		safe and appropria	te manner. This liquid is hig	hly corrosive to the skin
		and eyes and, bec	cause of this, must be hand	lled with extreme care.

	Acetic acid can also be damaging to the internal organs if ingested or in	
	the case of vapor inhalation.	
	3. Sodium hydroxide: Sodium hydroxide is strongly irritating and	
	corrosive. It can cause severe burns and permanent damage to any tissue	
	that it comes in contact with. Sodium hydroxide can cause hydrolysis	
	of proteins, and hence can cause burns in the eyes which may lead to	
	permanent eye damage.	
	4. Hydrogen peroxide: Hydrogen peroxide is a strong oxidizer (moderate	
	oxidizer in lower concentrations), and can be corrosive to the eyes, skin,	
	and respiratory system. This chemical can cause burns to the skin and	
	tissue damage to the eyes. Take special caution to avoid contact with	
	hydrogen peroxide.	
	5. Copper sulphate: Copper sulfate can cause severe eve irritation. Eating	
	large amounts of copper sulfate can lead to nausea, vomiting, and	
	damage to body tissues, blood cells, the liver, and kidneys.	
	6. Sodium acetate: May cause irritation to skin, eyes, and respiratory	
	tract.	
	7. Potassium dihydrogen phosphate: Acute Inhalation - irritation; Skin	
	Contact - irritation, chronic exposure may also cause dermatitis. Eye	
	Contact - mild irritation; Ingestion - nausea, vomiting, diarrhea, and	
	stomach pain and bone disorders (including bone and joint pain).	
Principle	Niacin vitamers are extracted from food by an acid (option A), or an	
-	acid/alkaline (option B) treatment and quantified by HPLC with a	
	fluorometric detection after a post-column derivatization with UV	
	irradiation. For option A, niacin is determined as the sum of nicotinamide	
	and nicotinic acid. Niacin is expressed as nicotinic acid after correction of	
	the molecular weights. For option B, niacin is determined and expressed as	
	nicotinic acid. The alkaline treatment transforms all nicotinamide into	
	nicotinic acid.	
Apparatus/Instruments	1. General-Usual laboratory apparatus and glassware.	
	2. UV vis Spectrophotometer is capable of measurement of absorbance at	
	defined wavelength.	
	3. Oven, capable of maintaining a temperature of 37 °C.	
	4. Autoclave, capable of maintaining a temperature of 120 °C.	
	5. A HPLC system with fluorometric detector (322 nm excitation and 380	
	nm emission wavelengths) and integrator.	
	6. A normal phase silica (HSS) T3 column (2.1×150 mm, 1.8μ m)	
	1. Note: Equivalent products may also be used if they can be shown to lead	
	to the same results; i.e., Other phases, particle sizes, or column	
	dimensions.	
	2. [e.g., Reference 2: HPLC system fluorescence detector with excitation	
	and emission wavelengths set at 322 nm and 380 nm, and an integrator.	
	Analytical reverse phase separating column - LiChrospher® 60 PP-18	

	Select B endcapped and VL-120 BLB column (a) a length of 25 cm; (b)
	an inner diameter of 4,0 mm; (c) a particle size of 5 μ m.
	3. Reference 3. A reversed-phase column (HSS T3 C18; 1.8 μm, 2.1mmx
	150 mm;). Separation parameters shall be adapted to such other
	materials to guarantee equivalent results].
	7. Filter device - Membrane filter with a pore size of for example $0.45 \mu\text{m}$.
	/ syringe-filter of 0.2 µm.
	8. Post-column derivatization tube and UV lamp - A
	polytetrafluoroethylene (PTFE) tube (length of 5 m, inner diameter of
	0.17 mm, external diameter of 1.59 mm) surrounding a UV light (366
	nm, 8 W).
	WARNING 1 — Harmful UV light could come out of the metal box
	containing the lamp.
	WARNING 2 — If bubble formation occurs in the tube due to overheating,
	the tube should be efficiently cooled by air circulation, for example by lifting
	the box.
Materials and Reagents	All reagents are analytical grade.
	1. Sodium acetate, $CH_3COONa > 99\%$
	2. Potassium dihydrogen phosphate, $KH_2PO_4 > 99.5\%$
	3. Non stabilized hydrogen peroxide solution, $H_2O_2 = 30\%$
	4. Copper sulfate, $Cu(II)SO_4 \cdot 5H_2O > 99\%$
	5. Acetic acid, $CH_3COOH > 99.8\%$
	6. Concentrated hydrochloric acid solution (option A and B), HCl =
	37.0%
	7. Sodium hydroxide (option B), (NaOH) \ge 99%
	1. Standard substances
	8. Nicotinic acid, $(C_5H_4NCOOH) \ge 99,5\%$
	9. Nicotinamide, $(C_5H_4NCONH_2) \ge 99.5\%$
	Note: The purity may vary from different suppliers and it is therefore
	necessary to determine the concentration of the calibration solution by a
	spectrometric determination
Preparation of Reagents	1. Acetic acid solution, substance concentration (CH ₃ COOH) = 5 mol/L
	2. Sodium acetate solution, $(CH_3COONa) = 2.5 \text{ mol/L}$
	3. Sodium acetate solution (option B), $(CH_3COONa) = 0.05 \text{ mol/L}$, pH =
	4.5
	Dissolve 4.10 g of sodium acetate in 900 ml of water. Adjust the
	solution to $pH = 4.5$ with acetic acid and then dilute to 1000 mL with
	Water.
	4. Hydrochioric acid solution (options A and B), (HCl) = 0.1 mol/L .
	5. Copper suitate solution, [Cu(11)SO4.5H ₂ O] (It should be suitable for
	annuon to prepare mobile phase).
	b. Potassium dinydrogen phosphate (KH_2PO_4) solution (It should be
	suitable for dilution to prepare mobile phase).

	7. Hydrogen peroxide solution (H_2O_2) (It should be suitable for dilution
	to prepare mobile phase).
	8. Sodium hydroxide solution (option B), $(NaOH) = 5 mol/L$.
	Dissolve 20 g of sodium hydroxide in 80 mL of water. After cooling
	dilute to 100 mL.
	Standard substances - Stock solutions
	9. Nicotinic acid stock solution, mass concentration = 1 mg/mL
	Dissolve an amount of the nicotinic acid standard substance e.g.
	approximately 100 mg (to the nearest 1 mg) in 100 mL of water. This
	solution is stable for 1 week at -18 $^{\circ}C \pm 1$.
	10. Nicotinamide stock solution, (options A and B) = 1 mg/mL
	Dissolve an amount of the nicotinamide standard substance e.g.
	approximately 100 mg (to the nearest 1 mg) in 100 mL of water. This
	solution is stable for 1 week at -18 °C \pm 1.
Method of analysis	Concentration tests
	Nicotinic acid solution = 1 mg/mL
	1. Dilute 1 mL of the nicotinic acid stock solution in 100 mL of
	hydrochloric acid (0.1 mol/L) solution and measure the absorbance at
	260 nm in a 1 cm cell using a UV Vis Spectrophotometer spectrometer
	against hydrochloric acid solution as reference.
	2. Calculate the mass concentration, ρ , in milligram per milliture of the stock solution, using the following Equation:
	stock solution, using the following Equation:
	$A_{260} \times 1000$
	$\rho = \frac{A_{260} \times 1000}{420}$
	$\rho = \frac{A_{260} \times 1000}{420}$ where
	$\rho = \frac{A_{260} \times 1000}{420}$ where A_{260} is the absorbance value of the solution at 260 nm;
	$\rho = \frac{A_{260} \times 1000}{420}$ where A_{260} is the absorbance value of the solution at 260 nm; 420 is the E ^{1%} _{1cm} value for nicotinic acid in 0.1 mol/L HCl,
	$\rho = \frac{A_{260} \times 1000}{420}$ where A_{260} is the absorbance value of the solution at 260 nm; 420 is the E ^{1%} _{1cm} value for nicotinic acid in 0.1 mol/L HCl,
	$\rho = \frac{A_{260} \times 1000}{420}$ where A_{260} is the absorbance value of the solution at 260 nm; 420 is the E ^{1%} _{1cm} value for nicotinic acid in 0.1 mol/L HCl, Nicotinamide solution = 1 mg/mL
	$\rho = \frac{A_{260} \times 1000}{420}$ where A_{260} is the absorbance value of the solution at 260 nm; 420 is the $E_{1cm}^{1\%}$ value for nicotinic acid in 0.1 mol/L HCl, Nicotinamide solution = 1 mg/mL 3. Dilute 1 mL of the nicotinamide stock solution in 100 mL of
	 ρ = A₂₆₀ × 1000/420 where A₂₆₀ is the absorbance value of the solution at 260 nm; 420 is the E^{1%}_{1cm} value for nicotinic acid in 0.1 mol/L HCl, Nicotinamide solution = 1 mg/mL 3. Dilute 1 mL of the nicotinamide stock solution in 100 mL of hydrochloric acid (0.1 mol/L) solution and measure the absorbance at
	 ρ = A₂₆₀ × 1000/420 where A₂₆₀ is the absorbance value of the solution at 260 nm; 420 is the E^{1%}_{1cm} value for nicotinic acid in 0.1 mol/L HCl, Nicotinamide solution = 1 mg/mL 3. Dilute 1 mL of the nicotinamide stock solution in 100 mL of hydrochloric acid (0.1 mol/L) solution and measure the absorbance at 260 nm in a 1 cm cell using a UV vis Spectrophotometer spectrometer
	 ρ = A₂₆₀ × 1000/420 where A₂₆₀ is the absorbance value of the solution at 260 nm; 420 is the E^{1%}_{1cm} value for nicotinic acid in 0.1 mol/L HCl, Nicotinamide solution = 1 mg/mL 3. Dilute 1 mL of the nicotinamide stock solution in 100 mL of hydrochloric acid (0.1 mol/L) solution and measure the absorbance at 260 nm in a 1 cm cell using a UV vis Spectrophotometer spectrometer against hydrochloric acid (0.1 mol/L) solution as reference.
	 ρ = A₂₆₀ × 1000/420 where A₂₆₀ is the absorbance value of the solution at 260 nm; 420 is the E^{1%}_{1cm} value for nicotinic acid in 0.1 mol/L HCl, Nicotinamide solution = 1 mg/mL 3. Dilute 1 mL of the nicotinamide stock solution in 100 mL of hydrochloric acid (0.1 mol/L) solution and measure the absorbance at 260 nm in a 1 cm cell using a UV vis Spectrophotometer spectrometer against hydrochloric acid (0.1 mol/L) solution as reference. 4. Calculate the mass concentration, ρ, in milligram per millilitre of the
	 ρ = A₂₆₀ × 1000/420 where A₂₆₀ is the absorbance value of the solution at 260 nm; 420 is the E^{1%}_{1cm} value for nicotinic acid in 0.1 mol/L HCl, Nicotinamide solution = 1 mg/mL 3. Dilute 1 mL of the nicotinamide stock solution in 100 mL of hydrochloric acid (0.1 mol/L) solution and measure the absorbance at 260 nm in a 1 cm cell using a UV vis Spectrophotometer spectrometer against hydrochloric acid (0.1 mol/L) solution as reference. 4. Calculate the mass concentration, ρ, in milligram per millilitre of the stock solution using the following Equation:
	 ρ = A₂₆₀ × 1000/420 where A₂₆₀ is the absorbance value of the solution at 260 nm; 420 is the E^{1%}_{1cm} value for nicotinic acid in 0.1 mol/L HCl, Nicotinamide solution = 1 mg/mL 3. Dilute 1 mL of the nicotinamide stock solution in 100 mL of hydrochloric acid (0.1 mol/L) solution and measure the absorbance at 260 nm in a 1 cm cell using a UV vis Spectrophotometer spectrometer against hydrochloric acid (0.1 mol/L) solution as reference. 4. Calculate the mass concentration, ρ, in milligram per millilitre of the stock solution using the following Equation:
	$\rho = \frac{A_{260} \times 1000}{420}$ where A_{260} is the absorbance value of the solution at 260 nm; 420 is the $E_{1cm}^{1\%}$ value for nicotinic acid in 0.1 mol/L HCl, Nicotinamide solution = 1 mg/mL 3. Dilute 1 mL of the nicotinamide stock solution in 100 mL of hydrochloric acid (0.1 mol/L) solution and measure the absorbance at 260 nm in a 1 cm cell using a UV vis Spectrophotometer spectrometer against hydrochloric acid (0.1 mol/L) solution as reference. 4. Calculate the mass concentration, ρ , in milligram per millilitre of the stock solution using the following Equation: $\rho = \frac{A_{260} \times 1000}{\rho}$
	$\rho = \frac{A_{260} \times 1000}{420}$ where A_{260} is the absorbance value of the solution at 260 nm; 420 is the $E_{1cm}^{1\%}$ value for nicotinic acid in 0.1 mol/L HCl, Nicotinamide solution = 1 mg/mL 3. Dilute 1 mL of the nicotinamide stock solution in 100 mL of hydrochloric acid (0.1 mol/L) solution and measure the absorbance at 260 nm in a 1 cm cell using a UV vis Spectrophotometer spectrometer against hydrochloric acid (0.1 mol/L) solution as reference. 4. Calculate the mass concentration, ρ , in milligram per millilitre of the stock solution using the following Equation: $\rho = \frac{A_{260} \times 1000}{410}$
	$\rho = \frac{A_{260} \times 1000}{420}$ where A_{260} is the absorbance value of the solution at 260 nm; 420 is the E ¹⁹⁶ _{1cm} value for nicotinic acid in 0.1 mol/L HCl, Nicotinamide solution = 1 mg/mL 3. Dilute 1 mL of the nicotinamide stock solution in 100 mL of hydrochloric acid (0.1 mol/L) solution and measure the absorbance at 260 nm in a 1 cm cell using a UV vis Spectrophotometer spectrometer against hydrochloric acid (0.1 mol/L) solution as reference. 4. Calculate the mass concentration, ρ , in milligram per millilitre of the stock solution using the following Equation: $\rho = \frac{A_{260} \times 1000}{410}$ where
	$\rho = \frac{A_{260} \times 1000}{420}$ where $A_{260} \text{ is the absorbance value of the solution at 260 nm;}$ 420 is the $E_{1cm}^{1\%}$ value for nicotinic acid in 0.1 mol/L HCl, Nicotinamide solution = 1 mg/mL 3. Dilute 1 mL of the nicotinamide stock solution in 100 mL of hydrochloric acid (0.1 mol/L) solution and measure the absorbance at 260 nm in a 1 cm cell using a UV vis Spectrophotometer spectrometer against hydrochloric acid (0.1 mol/L) solution as reference. 4. Calculate the mass concentration, ρ , in milligram per millilitre of the stock solution using the following Equation: $\rho = \frac{A_{260} \times 1000}{410}$ where $A_{260} \text{ is the absorbance value of the solution at 260 nm.}$
	$\rho = \frac{A_{260} \times 1000}{420}$ where $A_{260} \text{ is the absorbance value of the solution at 260 nm;}$ 420 is the $E_{1cm}^{1\%}$ value for nicotinic acid in 0.1 mol/L HCl, Nicotinamide solution = 1 mg/mL 3. Dilute 1 mL of the nicotinamide stock solution in 100 mL of hydrochloric acid (0.1 mol/L) solution and measure the absorbance at 260 nm in a 1 cm cell using a UV vis Spectrophotometer spectrometer against hydrochloric acid (0.1 mol/L) solution as reference. 4. Calculate the mass concentration, ρ , in milligram per millilitre of the stock solution using the following Equation: $\rho = \frac{A_{260} \times 1000}{410}$ where A_{260} is the absorbance value of the solution at 260 nm. 410 is the $E_{1cm}^{1\%}$ value for nicotinamide in 0.1 mol/L HCl.
	$\rho = \frac{A_{260} \times 1000}{420}$ where $A_{260} \text{ is the absorbance value of the solution at 260 nm;}$ 420 is the E ^{1%} _{1cm} value for nicotinic acid in 0.1 mol/L HCl, Nicotinamide solution = 1 mg/mL 3. Dilute 1 mL of the nicotinamide stock solution in 100 mL of hydrochloric acid (0.1 mol/L) solution and measure the absorbance at 260 nm in a 1 cm cell using a UV vis Spectrophotometer spectrometer against hydrochloric acid (0.1 mol/L) solution as reference. 4. Calculate the mass concentration, ρ , in milligram per millilitre of the stock solution using the following Equation: $\rho = \frac{A_{260} \times 1000}{410}$ where A_{260} is the absorbance value of the solution at 260 nm. 410 is the E ^{1%} _{1cm} value for nicotinamide in 0.1 mol/L HCl.

5	5. Prepare e.g. a first solution with 1 mL of each stock solution in 100 mL of water
	5. From this solution prepare four standard solutions (0.5 mL, 2.5 mL, 10
	mL and 50 mL) in 100 mL of water. These solutions are stable for one
	day at room temperature.
A	cid extraction
7	Analytical samples $(0.5 - 1.0 \text{ g})$ were vortexed with 25 mL of 0.1 M
5	In tubes were placed in a boiling water bath for 1 h with an occasional shaking of the tubes $(2 - 2 \text{ times})$
	snaking of the tubes $(2 - 3 \text{ times})$.
	2. After cooling on an ice bath, the pH of the extracts was adjusted to 4.5 with sodium acetate solution (2.5 M)
	0 The extracts were then transferred into 50 mL volumetric flasks and
	filled up to the mark with d-H ₂ O.
1	1. The sample extracts were syringe-filtered (0.2 μ m) into 2 mL HPLC
	vials prior to the HPLC analysis.
A	cid-alkaline extraction
1	2. The samples $(0.5 - 2.0 \text{ g})$ were vortexed with 25 mL of 0.1 M
	hydrochloric acid.
1	3. The tubes were heated for 1 h in a boiling water bath.
1	4. The extracts were then transferred into Erlenmeyer flasks (250 mL). 20
	mL of d-H ₂ O and 4 mL of 5M sodium hydroxide were added and the
	flasks were autoclaved (121 °C \pm 1; 1 h).
1	5. After cooling, the pH of the extracts was adjusted to 4.5 first with
	concentrated and then with dilute (0.1 M) hydrochloric acid.
1	6. The extracts were diluted to achieve 100 mL with d-H ₂ O and filtered
	into HPLC vials.
Н	PLC analysis: (Reference 2.)
1	7. The niacin vitamers (NA and NAM) were separated with a normal
	phase silica (HSS) T3 column (2.1×150 mm, 1.8μ m).
1	8. The chromatographic separation was performed at 30 °C using an
	isocratic flow of the mobile phase (MP) (0.3 mL/min) consisting of an
	optimized concentration of copper sulphate (CuSO ₄ , 5 μ M) and
	hydrogen peroxide (H ₂ O ₂ , 150 mM) in a potassium phosphate buffer
	(70 mM of potassium dihydrogen phosphate; pH 4.5).
1	9. The run time as 15 min.
2	0. The eluent flow from the column was exposed to a long-wavelength
	UV light (366 nm, 8 W) in a knitted PTEE reaction coil (1.59 mm
	o.d., 0.17 mm i.d. and 5 m length).
2	1. NA and NAM were detected fluorometrically (322 nm excitation and
	380 nm emission wavelengths).
2	2. The sample extracts were injected (10 μ L) in duplicate.

	Notal Potention times NA 26 min: NAM 106 min: These may very		
	[Note1. Retention times - NA, 5.6 min; NAM, 10.6 min; These may vary		
	depending on the column phase and dimensions as well as mobile phase flow		
	rate.		
	Note 2. The LOD for NA and NAM was found to be 0.02 ng and 0.01 ng		
	respectively. The LOQ (3-fold the LOD) for NA and NAM was thus 0.06 ng		
	and 0.03 ng respectively]		
	23. The actual concentration of the NA and NAM standards was confirmed		
	spectrophotometrically (Reference 2 EN 15,652 method 2009) at 420		
	nm and 410 nm for NA and NAM, respectively, using equations		
	described earlier.		
Calculation with units	1. The NA and NAM concentrations were calculated using external		
of expression	calibration curves (calibration range: $0.2 - 20$ ng).		
	2. In terms of the cereal sample (for a 5 g sample), the LOQ for NA was		
	0.3 μ g/g and it was 0.03 μ g/g for NAM. The linear response for both		
	NA and NAM were in the range of 0.2–1000 ng, with consistently		
	excellent linearity (average $R^2 = 0.9985$; RSD of $< 3.5\%$).		
	Niacin is expressed as mg/100 g foodstuff.		
Reference	1. Niacin contents of cereal-milling products in food-composition		
	databases need to be updated; Journal of Food Composition and		
	Analysis (2020), 91, 103518.		
	2. EN 15652:2009- Foodstuffs - Determination of niacin by HPLC.		
	3. Riboflavin, niacin, folate and vitamin B12 in commercial microalgae		
	powders; Journal of Food Composition and Analysis (2019) 82,		
	103226.		
	4. Determination of niacin profiles in some animal and plant based foods		
	by high performance liquid chromatography: association with healthy		
	nutrition; Journal of Animal Science Technology 2019; 61(3), 138-146.		
Approved by	Scientific Panel on Methods of Sampling and Analysis		

Note: The test methods given in the manual are standardised/validated/taken from national or international methods or recognised specifications, however it would be the responsibility of the respective testing laboratory to verify the performance of these methods onsite and ensure that it gives proper results before putting these methods in to use".