Manual of Methods of Analysis of Foods-Metals and Minerals

Table of Contents

S.No.	Method No.	Particulars	Page No.
1.	FSSAI 09.001:2024	Method for the analysis of trace elements in food by Inductively Coupled Plasma-Optical Emission Spectroscopy Using Microwave Assisted Digestion (ICP-OES)	3-11
2.	FSSAI 09.002:2024	Method for Determination of Calcium, Copper, Iron, Magnesium, Manganese, Potassium, Phosphorus, Sodium, and Zinc in Fortified Food Products by Inductively Coupled Plasma-Optical Emission Spectrometry (ICP-OES)	12-18
3.	FSSAI 09.003:2024	Method for the analysis of trace elements in Water by Inductively Coupled Plasma Mass Spectrometry (ICP-MS)	19-29
4.	FSSAI 09.004:2024	Method for the analysis of Arsenic, Cadmium, Mercury, and Lead in Foods by Pressure Digestion and Inductively Coupled Plasma-Mass Spectrometry (ICP-MS)	30-36
5.	FSSAI 09.005:2024	Method for the analysis of Chromium, Selenium, and Molybdenum in Infant Foods and Adult Nutritional Food Products by Inductively Coupled Plasma-Mass Spectrometry (ICP-MS)	37-40
6.	FSSAI 09.006:2024	Method for the analysis of Total Iodine in Infant Foods and Adult/Pediatric Nutritional foods by Inductively Coupled Plasma–Mass Spectrometry	41-46
7.	FSSAI 09.007:2024	Method for the Determination of Methyl Mercury and Total Mercury in Seafood by High Performance Liquid Chromatographic- Inductively Coupled Plasma-Mass Spectrometry (ICP-MS)	47-52

एफएसएसएआई	Method for the analysis of trace elements in food by Inductively							
Jssai	Coupled Plasma-Optical Emission Spectroscopy							
भारतीय साद्य सुरक्षा और मानक प्राधिकरण Food Safety and Standards Authoniy of India स्वास्थ्य और परिवार कल्याण मंत्रालय Mainten of Maniferrant Family Maliferra	Using Microwave Assisted Digestion							
wimstry of needin and namity weiliare								
Method No.	FSSAI 09.001:2024 Revision No. & Date 0.0							
Scope	This method describes procedures for using inductively coupled plasma-							
	optical emission spectrometry (ICP-OES) for determination of total							
	element concentration (mass fraction) in food.	The method was validated					
	with the following food	ds: milk, cheese, bacon	, tuna, eggs, peanut butter,					
	corn, bread, pancakes,	cereal, prune juice, l	lemonade, broccoli, sweet					
	potato, spaghetti & mea	atballs, mayonnaise, bee	er, beef baby food, haddock					
	and pears. Other mat	rices may be analyzed	d by these procedures if					
	performance is demons	strated for an applicabl	e analyte in the matrix of					
	interest, at the concentration	ation levels of interest.						
	It should be noted that	t aluminum results cou	Id be biased low in some					
	samples because of inse	oluble aluminum compo	ounds especially if silica is					
	present. Thallium is li	sted conditionally beca	ause although fortification					
	recoveries were accept	ptable during method	validation, no reference					
	materials were available	2.						
	ElementLOD (mg/kg)LOQ (mg/kg)							
	Aluminum (Al)0.82							
	Arsenic (As)24							
	Barium (Ba) 0.05 2							
	Boron (B)	0.3	0.8					
	Cadmium (Cd)	0.3	0.9					
	Calcium(Ca)	8	30					
	Chromium (Cr)	2	5					
	Cobalt (Co)	0.3	0.8					
	Copper (Cu)	0.1	0.3					
	Iron (Fe)	0.2	0.3					
	Lead (Pb)	3	6					
	Magnesium (Mg)	2	6					
	Manganese (Mn) 0.2 0.4							
	Molybdenum (Mo) 0.4 1							
	Nikel 0.9 3							
	Phosphorus (P)	2	6					
	Potassium (K)	20	40					
	Sodium (Na)	2	5					

	Strontium (Sr)	0.03	0.07				
	Thellium (TI)	0.05	6				
	Vanadium (V)	2	0				
	Vanadium (V)	0.2	0.5				
	Zinc (Zn)	0.3	0.5				
	Aluminum concentrations using the method do not account for aluminum						
	bound to silicates. The method, especially using pneumatic nebulization,						
	may not achieve quan	titative measurement of	typical concentrations in				
	some loods for some	e elements. Using un	The fellessing elements				
	improve analytical lin	hts for most elements	. The following elements				
	appear prone to labora	atory environmental co	and therefore				
	require extensive ass	essment of containing	ation control: aluminum,				
Cartian	1) Use from head and	ween full general lab	anotomy must office alothing				
Caution	1) Use fume flood and	rists ave protection (a)	ofatory protective clothing,				
	gloves, and approp	ring standards or test po	arety glasses) when using				
	2) Inductively coupled	nlasmas should only k	violis with actu solutions.				
	2) Inductively coupled plasmas should only be viewed with proper eye						
	3) Reagents should be regarded as notential health bazards and avnosure						
	to these materials should be minimized. Follow universal precautions						
	Wear gloves a lab c	iould be minimized. Fo	while handling reagent				
	4) Exercise caution w	ben handling and disp	ensing concentrated acids				
	Always add acid to	water Acids are caustic	chemicals that are canable				
	of causing severe eve and skin damage. If acids or bases come in						
	contact with any part of the body quickly wash the affected area with						
	copious quantities of	f water for at least 15 m	inutes				
	5) Microwaye digesti	on systems are dan	nates. Igerous Vessels contain				
	concentrated nitric	acid at high temperatu	res and pressures Analyst				
	must be familia	r with manufacturer	's recommended safety				
	precautions. Never	remove hot vessels fro	om microwave: wait until				
	they are near room	temperature. Keep mic	crowave door closed while				
	vessels are hot. The	door is the primary safe	ty device if a vessel vents.				
Principle	An analytical portion	(0.4 to 5 g dependent)	on food composition) is				
	decomposed with nitrie	c acid and hydrogen p	eroxide in a high-pressure				
	Teflon [®] lined digestion	n vessel using microwa	ve heating and a feedback				
	program to control tem	perature and pressure. A	A 50 mL analytical solution				
	is prepared from the dis	gest. Analytical solution	s are nebulized and aerosol				
	is transported to plasm	a where desolvation a	nd excitation occur. Either				
	pneumatic or ultrasor	nic nebulization samp	ble introduction is used.				

	Characteristic atomic emission spectra are produced by radio frequency					
	inductively coupled plasma. Spectra are dispersed by a grating					
	spectrometer, and line intensities are measured with a light sensitive					
	detector such as a photomultiplier tube or charge transfer device.					
	Photocurrents are processed by a computer system. A background					
	correction technique is required to compensate for variable background					
	emission contribution to analyte signal and should be applied except in					
	cases of line broadening.					
Apparatus/Instruments	1) Inductively coupled plasma atomic emission spectrometer (ICP-					
	AES)—Simultaneous or sequential ICP-AES with associated					
	glassware, which uses a mass flow controller to regulate argon					
	nebulizer flow rate supplied by a Dewar of liquid argon or tank of					
	gaseous argon. A variable speed peristaltic pump to deliver all					
	solutions to nebulizer. Pneumatic nebulizer which can aspirate high					
	dissolved solids (e.g. V-groove, cross flow, etc.) or an ultrasonic					
	nebulizer					
	2) Microwave decomposition system—requires temperature control to					
	200 °C, pressure control to at least 600 psi, power range of 0-100% in					
	1% increments minimum 1000 watts for 12 position carousel					
	feedback control of temperature and pressure and multisten					
	programming with ramp to temperature capability Digestion vessels					
	must be quartz or Teflon lined. System must be able to reach at least					
	$200 ^{\circ}\text{C}$ and at least 600 psi. Vessels designed to vent and rescal can be					
	used provided they vent at pressures >300 psi					
Materials and Reagents	Reagents may contain elemental impurities that can affect the quality of					
Materials and Reagents	analytical results. Use of high purity or trace element (i.e. metals) grade					
	reagents is usually required					
	1) Reagent water Water that meets specifications for ASTM Type I					
	1) Reagent water—water that meets specifications for ASTIM Type 1 water					
	2) High purity nitric acid concentrated (sp. gr 1.41) trace element grade					
	or double distilled					
	3) Nitric acid Concentrated (sp gr 1.41) ACS reagent grade					
	4) Nitric acid 1% (y/y) Dilute 10 mL high purity pitric acid to 1000 mL					
	with reagent water					
	(v/v) Dilute 100 mL high purity pitric acid to					
	1000 mL with reagant water					
	6) (6) Hydrogen perovide 30% H2O2 solution. High purity or trace					
	metals grade					
Dronountion of Descente	1) Stock standard solutions. Commercially managed single element					
r reparation of keagents	1) Stock standard solutions—Commercially prepared single element					

solutions prepared specifically for spectrometric analysis (usually 1000 or 10,000 mg/L). Stock standard solutions may also be prepared in the laboratory from high purity (≥99.99%) metals or salts. Alternatively, commercial multi-element solutions prepared specifically for spectrometric analysis can be used. These multi-element solutions will be much lower in concentration (typically 10-500 mg/L) than single element solutions to avoid compatibility problems.

- 2) Intermediate standard solution(s)—Prepared to contain appropriate concentration(s) of analytes for preparation of standard solutions. Pipet an appropriate volume of stock standard solution(s) into an acid rinsed volumetric flask and dilute to volume with 10% nitric acid. Store prepared intermediate standard solutions in plastic bottles. Alternatively, commercial multi-element solutions prepared specifically for spectrometric analysis can be used.
- **3)** Standard solutions—prepare at least 3 standard solutions by combining appropriate volumes of stock standard solutions or intermediate standard solutions in volumetric flasks. Analyte concentration range should cover the LDR or a portion thereof. Dilute to volume with 10% nitric acid. Many of the elements (cadmium, cobalt, molybdenum, etc.) have LDRs that far exceed the values expected in food analytical solutions. In addition, line-rich elements like iron may cause spectral interference on other emission lines if high concentrations are used to standardize the instrument. Therefore, the analyst may choose to work within part of the LDR. A recommended maximum concentration of an element in a standard solution is 10 mg/L. Exceptions would be elements usually present at high concentrations for example, calcium, sodium, potassium, magnesium and phosphorus. For convenience, each standard solution should contain all the analytes to be determined.

Chemical compatibility (i.e., of analytes, acids, etc.) must be considered to avoid the formation of analyte precipitates when mixing single element stock solutions to prepare standard solutions. High quality custom-made multi-element solutions are commercially available and are recommended. Transfer prepared standard solutions to acid cleaned plastic bottles (Teflon FEP is preferred) for storage.

4) Standard blank—10% nitric acid. Prepare sufficient amount for use in standardization, determination of IDLs, and for nebulizer rinse between each measurement.

	5) Independent check solution (ICS)—Dilute appropriate volumes of
	analyte stock solutions or intermediate standard solutions obtained
	from a different source than used to prepare standard solutions with
	10% nitric acid so analyte concentration will be several times the
	ASQL or in the range of 0.5 to 10 mg/L for most elements.
	6) Check solution—Use mid-concentration multi-analyte standard
	solution for the check solution.
	7) Spike solution—Prepared such that, when 1 mL is diluted to
	analytical solution volume (initial analytical solution volume usually
	50 mL), analyte concentration is approximately at the middle of the
	LDR or appropriate for the expected sample analyte concentration. A
	fortification solution should not be prepared that would result in an
	analyte concentration in the analytical solution that is less than 10
	times the ASQL. In addition, the fortification solution should not
	increase any analyte's concentration by more than 40 mg/L relative to
	the analytical solution because of potential problems caused by high
	analyte levels (nebulizer transport effects and spectral interference,
	etc.) and the challenge of minimizing the spike solution volume. Pipet
	an appropriate volume of stock standard solution(s) or intermediate
	standard solution(s) into an acid rinsed volumetric flask and dilute to
	volume with 10% nitric acid.
Sample Preparation	1) Weigh analytical portion into clean vessel liner and determine mass of
	analytical portion. Generally, for samples of unknown composition,
	weight the equivalent of about 0.5 dry material to an accuracy of 0.001
	g. Less than the maximum mass should be used for samples high in
	salt content. A maximum analytical portion of 5 g should not be
	exceeded even if calculations based on the food's energy indicate that
	a larger portion could be taken. Use 1 g reagent water for method
	blanks (MBKs). For dry samples and dry CRM materials adding 1 g of
	reagent water can help control exothermic reactions during the
	digestion.
	2) Pipette 8.0 mL or weigh 11.3 g of high purity nitric acid (sp gr 1.41
	g/mL) into vessel liner, washing down any material on walls.
	Weighing acid using a top loading balance and Teflon FEP wash bottle
	is suggested. Use double distilled grade for lowest method blank
	values. Acid should be added drop wise for the first few mL until it
	can be established that the sample will not react violently. Some foods,
	especially those high in sugar, will react with nitric acid within several
	minutes. If foaming or reaction with the acid is observed, let the

	vessels sit uncovered in a class 100 clean hood for 20 minutes or until reaction subsides. If a clean hood is unavailable, place caps on vessels without pressing down fully or, if so equipped, cap vessels but loosen the pressure relief nut (with the safety membrane) to allow pressure to escape. If, however, it appears that excessive foaming would result in the sample-acid mixture expanding out of the vessel then cap the		
	vessel and tighten to appropriate acid.	torque to prevent loss of sample or	
	3) Add 1 mL high purity 30% H2O2	Seal vessels, apply correct torque to	
	cap (ugnien pressure rener nuis	if equipped) and run me digestion	
	program as given in aoie.		
	Digestion program with Ra	amp to Temperature feature	
	and press	ure control	
	Maximum Power (Watts)	1200	
	Control Pressure (ps1)	800	
	Ramp Time (min)	25	
	Hold Time (min)	15	
	Control Temperature (°C)	200	
	Power is applied for the Ramp Time minutes or until Control Pressure or Control Temperature is met. If Control Pressure or Control Temperature are met before end of Ramp Time then program proceeds to Hold Time.		
	4) After vessels have cooled to less than 50° C remove them to an exhausting clean hood and vent excess pressure slowly. Quantitatively transfer and dilute digestion solution with reagent water to 25 mL. This analytical solution should be transferred to a plastic bottle or a capped polypropylene centrifuge tube for storage.		
Method of analysis	 capped polypropylene centrifuge tube for storage.) Instrument Setup -Setup inductively coupled plasma optical emission spectrometer according to the manufacturer's recommendations and with the following attributes: Set rinse time to at least 60 sec. Program instrument method for the analytes of interest. Include the following elements even if they are not analytes of interest to allow for interference correction: Al,Ca, Fe, Cr, Cu, Mn, Ti, and V. Suggested emission line wavelengths are listed in below table. Other wavelengths may be used but they may not achieve the same sensitivities. 		

Element	Wavelength (nm)	
Aluminum (Al)	308.22	
Arsenic (As)	189.01	
Barium (Ba)	493.41	
Boron (B)	249.68	
Cadmium (Cd)	226.50	
Calcium(Ca)	317.93	
Chromium (Cr)	267.72	
Cobalt (Co)	228.62	
Copper (Cu)	324.75	
Iron (Fe)	259.94	
Lead (Pb)	220.35	
Magnesium (Mg)	383.83	
Manganese (Mn)	257.61	
Molybdenum (Mo)	202.03	
Nickel	231.60	
Phosphorus (P)	178.29	
Potassium (K)	766.49	
Sodium (Na)	589.59	
Strontium (Sr)	407.77	
Thallium (Tl)	190.86	
Vanadium (V)	292.40	
Zinc (Zn)	213.86	
 Use backgrour Configure in integration time emission line. A plasma before s and the mean an Program instrintercept, curve mg/L concentration from standard se integrations to c 	nd correction. Instrument for 3 integrates appropriate for the Allow at least 10 sec after starting integration. Reputed RSD. Instrument to use a linear of fit algorithm for convection units. Do not subtrates solution response. Use the stalculate concentration of the stalculate concent	rations of emission. Use particular instrument and er the solution reaches the port each emission reading r, least squares calculated verting emission values to act standard blank response the mean of the emission f analyte.
2) Determination of A i. Standardize the standard solution the standard	Analyte Concentration instrument using the sta on concentration levels. solution reaches the	Using Standard Curve andard blank and at least 3 Allow at least 10 sec after plasma before starting

	integration. Flush system with standard blank for at least 60 sec between each standard solution.
	ii. Check Standardization Performance
	 Correlation coefficient (r) of linear regression (emission intensity verses concentration) is ≥0.998. ICS recovery within 100 ± 5% (initial calibration verification). Standard blank <asdl.< li=""> </asdl.<>
	 iii. Analyze analytical solutions and quality control solutions. Interpolate analyte concentration from standard curve. Rinse sample introduction system by aspirating standard blank for a minimum of 60 sec between all analyses (or longer if necessary). Rinse time is appropriate if results of a standard blank are <asdl a="" after="" analyzed="" high="" immediately="" li="" standard.<="" when=""> </asdl>
	 iv. Check Instrument Measurement Performance RSD of replicate integrations ≤7% for all solutions when instrument response ≥ASQL. Check solution analyzed at a frequency of 10% and at the end of the analytical run has a recovery of 100 ± 10% (continuing)
	 calibration verification). Standard blank analyzed at a frequency of 10% and at the end of the analytical run <asdl (continuing="" blank).<="" calibration="" li=""> Measurements are below highest standard solution. Dilute analytical solution with standard blank if necessary to comply with criteria. Wavelength scan indicates absence of spectral interference that is not corrected for by background correction or inter-element correction factors. </asdl>
	 v. Inter-element Correction Factors If analytical solution has or is expected to have Al, Ca, Fe, Cr, Cu, Mn, Ti or V at concentrations >20 mg/L then inter-element correction factors must be determined as outlined in manufacturer's Instructions. Program instrument to use these factors. Analyze the solution(s) used to determine the inter-element correction factors as a sample to demonstrate proper correction for
~	interference.
Calculation with units of expression	Calculate the concentration (mass fraction) of the analyte in the analytical portion according to the formula

	Concentration (mg/kg)=[(S×DF)-MBKL]×V					
	<i>m</i> ×MCF					
	where					
	S = concentration of analyte in analytical solution (or diluted					
	analytical solution) (mg/L)					
	MBKL = laboratory MBK (mg/L)					
	V = volume (L) of analytical solution (usually 0.050 L)					
	m = mass of analytical portion (kg)					
	DF = dilution factor (1 if analytical solution not diluted)					
	MCF = mass correction factor (1 if no water or other solvent was					
	added to aid homogenization)					
	Round calculated concentration to at most 3 significant figures.					
	Concentration may be converted to other convenient units (<i>e.g.</i> , μ g/kg,					
	ng/kg).					
Inference						
(Qualitative Analysis)						
Reference	U.S. Food and Drug Administration-(4.8) High Pressure Liquid					
	Chromatographic-Inductively Coupled Plasma-Mass Spectrometric					
	Determination of Methylmercury and Total Mercury in Seafood (version					
	1.1) (August 1010)					
Approved by	Scientific Panel on Methods of Sampling and Analysis					

एफएसएसएआई जित्र हो के सारक भारतीय वाच सुरक्ष और मानक माणिकरण Food Sadeby and Blandarda Authority of India स्वास्य और परिवार कल्पाण मंत्रालय Ministry of Health and Family Welfare	Method for Determination of Calcium, Copper, Iron, Magnesium, Manganese, Potassium, Phosphorus, Sodium, and Zinc in Fortified Food Products by Inductively Coupled Plasma-Optical Emission Spectrometry (ICP-OES)					
Method No.	FSSAI 09.002:2024 Revision No. & Date 0.0					
Scope	Applicable to analysis of manganese, phosphorus, s Limit of quantitation (L	f calcium, copper, iron, pe sodium, and zinc in fortifie OO; mg/kg): Ca (150); Cu	otassium, magnesium, ed food products. 1 (2); Fe (10); K (200);			
	Mg (50); Mn (0.05); Na (100); P (100); Zn (5).					
Caution	 Use fume hood and wear full personal laboratory protective clothing, gloves, and appropriate eye protection (safety glasses) when using glassware and preparing standards or test portions with acid solutions. Inductively coupled plasmas should only be viewed with proper eye protection from ultraviolet emissions. Reagents should be regarded as potential health hazards and exposure to these materials should be minimized. Follow universal precautions. Wear gloves, a lab coat, and safety glasses while handling reagent. Exercise caution when handling and dispensing concentrated acids. Always add acid to water. Acids are caustic chemicals that are capable of causing severe eye and skin damage. If acids or bases come in contact with any part of the body, quickly wash the affected area with copious quantities of water for at least 15 minutes. Application of microwave digestion systems involves hot pressurized acid solutions and concentrated acids. Follow manufacturer's directions for safety risk and safety environment of microwave systems. Never remove hot vessels from microwave; wait until they are near room temperature. Keep microwave door closed while vessels 					
Principle	The principle involves the removal of organic matter of the sample through acid digestion to ensure the trace elements are in free form for their measurement by ICP-OES. Test portion is heated at 200°C either with nitric acid in a closed-vessel microwave digestion system (MDC) or					
	with a combination of hy	ydrogen peroxide, nitric a	(MDO)			
A proporties/Instruments	acid in an open-vessel mi	crowave digestion system	(MDU).			
Apparatus/instruments	 Microwave- Commercial MDC or MDO designed for laboratory use at 200 ± 20°C, up to 600 psi, and controlled temperature or pressure ramping capability. It is recommended that vessel design be selected that will withstand the maximum possible pressure (600 psi) since organic residues of rich-fat or rich-carbohydrate samples, if not given sufficient time to predigest, will generate significant pressure during digestion. ICP-OES spectrometer—Instrument with axial radial or dual view 					

grating configurations and auto sampler, capable of determining multiple wavelengths for each element of interest with the required sensitivity. A 3-channel peristaltic pump with or without appropriate in-line addition system (e.g., T connector) are linked between the peristaltic pump and nebulizer to avoid having to manually add ionization buffer and internal standards to each sample solution. A thermostated cyclonic spray chamber equipped with a microconcentric nebulizer or other components designed to optimize aerosol and maximize precision was used.

Ionization buffer (cesium chloride) is combined with the internal standard solution to compensate EIEs effects (e.g., K, Na, and Ca) in the plasma since certain food materials can contain substantial concentrations of these elements. This provides a significant source of electrons in the plasma. The presence of ionization buffer in all samples and standards will minimize the effects of varying concentrations of EIEs in the sample. The solution presented to the nebulizer contains a maximum of 5000 mg/kg cesium for high- salted food raw materials (e.g., culinary products or tastemakers) and a minimum of 500 mg/kg cesium (for main food samples); 20 mg/kg indium and 5 mg/kg strontium, yttrium, and chromium; less than half of each element concentration of the higher working standard Std6 and less than 0.5 g/kg total dissolved minerals.

3) ICP wavelengths- A number of recommended and alternative wavelengths may be used for the nine elements to be determined and internal standards. As a minimum, select one recommended and one alternative wavelength for each element corrected by one recommended wavelength for appropriate internal standard. All responses for both recommended and alternative wavelengths for each element are corrected using only one internal standard line. The following is a list of wavelengths for each element (and its appropriate internal standard) in priority order that have been found acceptable for main foodstuffs:

The following is a list of wavelengths for each element (and its appropriate internal standard) in priority order that have been found acceptable for main foodstuffs: Wavelength (nm): Ca: 317.933 (In: 303.936); Cu: 324.754 (In: 303.936); Fe: 259.94 (Sr: 338.071); K: 766.491 (Sr: 460.733); Mg: 285.213 (In: 303.936); Mn: 257.610 (Sr: 338.071); Na: 589.592 (Sr: 460.733); P: 213.618 (In: 303.936); Zn: 213.857 (Sr: 338.071).

Other wavelengths that are acceptable for both elements and internal standards could be used as confirmatory analytical lines or alternative wavelengths as certain recommended lines may not be available on some ICP-OES systems: Wavelength (nm): Ca: 317.933 (Y: 371.028); Cu: 324.754 (Y: 371.028), 327.395 (In: 303.936 or Y: 371.028); Fe:

	259.94 (Y: 371.028 or Cr: 283.563); Mg: 285.213 (Y: 371.028), 279.028 (In: 303.936); Mn: 257.610 (Sr: 460.733 or Y: 371.028); P: 178.222 (Sr: 460.733 or Y: 371.028); Zn: 213.857 (Sr: 460.733 or Y: 371.028).						
Materials and Reagents	1) 2) 3) 4)	 High-grade water, (18 MΩ).—For slurry preparation and/or dilution. Nitric acid (HNO3), 65% (w/v).—Trace metal grade throughout. Hydrochloric acid (HCl), 37% (w/v).—Trace metal grade throughout. Hydrogen peroxide (H2O2), 97% (w/v).—Trace metal grade throughout. 					
Preparation of Reagents	(:	a) Ioniza	ation buffer/	internal sta	ndard soluti	on—Weigh 1.27	g
		cesiur	n chloride into	a 1000 mL a	cid-washed vo	lumetric flask [Not	te:
		This	cesium 0.1%	(w/v) solu	tion was test	ed as the minim	ıal
		recom	mended conce	entration requ	ired for elem	ent analysis in mo	ost
		food 1	matrixes. Cs so	olution 1% (w	/v) is recomme	nded if an element	18
		preser	nt at low conce	entration in h	ign-salted too	a raw materials, e.g	g.,
		food	ury products or grade salts 1 A	dd 40 mL ind	or II It is analy ium $1000 \text{ mg}^{\text{J}}$	zeu as an impurity	in of
		stront	jum vttrium	and chrom	1000 mg/s	y/kg stock standa	ord
		strontium, yttrium, and chromium 1000 mg/kg stock standard solutions as internal standards Add 10 mJ HNO3 Dilute to volume					
		with H2O, mix, and transfer to an acid-washed polyethylene bottle.					
		(Note	: Reagent cond	centrations as	sume the use of	of same pump tubi	ng
		intern	al diameter fo	or both inter	nal standard/ic	onization buffer a	nd
		sampl	le pump tubes u	using automat	ic addition.)		
	()	b) Stock	standard sol	ution —Work	ing standards o	can be prepared fro	m
		ICP-g	grade individua	al element 10	000 mg/kg (e.	g., for copper, iro	m,
		mang	manganese, and zinc) and 10 000 mg/kg (e.g., for calcium,				
		magnesium, phosphorus, potassium, and sodium) commercial stock					
		standa	ard solutions.	However,	It is also	acceptable to u	ise
		contai	ining all of the	nine element	s at appropriate	stanuaru inixtur	es
	(contai	mediate stor	k solution_	-Suggested c	composition of t	he
		intern	nediate stock st	tandard soluti	on:	inposition of t	
	Т	able 1 (I	Preparation of	ⁱ intermediat	e solutions fro	m stock solution)	
			-	Stock	Intermedia	Volume of	
		S.No. Metal solution te stock stock solution					
			conc. solution required for				
				(mg/kg)	(mg/kg)	300 III	
		1	Calcium	10000	1500	75	
		2	Magnesium	10000	500	25	

3	Phosphorus	10000	1000	50
4	Potassium	10000	2000	100
5	Sodium	10000	1000	50
6	Copper	1000	10	5
7	Iron	1000	50	25
8	Manganese	1000	0.25	0.125
9	Zinc	1000	20	10

(d) *Working standard solutions*—Standards prepared from intermediate stock standard solution are designed to have the same acid concentration as digested test solutions (i.e., 10%, v/v, HNO3) for MDC or 15% (v/v) for MDO using combined acids (HNO3, H2O2, and HCl).

(1) *Std6*—Pipet 15.0 mL intermediate stock standard solution into a 100 mL acid-washed volumetric flask. Add 10 mL HNO3 (MDC) or 15 mL combined acids (MDO), dilute to volume with H2O, mix, and transfer to acid-washed polyethylene bottle.

(2) *Std5*—Pipet 10 mL intermediate stock standard solution into a 100 mL acid-washed volumetric flask. Add 10 mL *HNO3* (MDC) or 15 mL combined acids (MDO), dilute to volume with H2O, mix, and transfer to acid-washed polyethylene bottle.

(3) *Std4*—Pipet 5.0 mL intermediate stock standard solution into a 100 mL acid-washed volumetric flask. Add 10 mL *HNO3* (MDC) or 15 mL combined acids (MDO), dilute to volume with H2O, mix, and transfer to acid-washed polyethylene bottle.

(4) *Std3*—Pipet 2.0 mL intermediate stock standard solution into a 100 mL acid-washed volumetric flask. Add 10 mL HNO_3 (MDC) or 15 mL combined acids (MDO), dilute to volume with H2₀, mix, and transfer to acid-washed polyethylene bottle.

(5) *Std2*—Pipet 1.0 mL intermediate stock standard solution into a 100 mL acid-washed volumetric flask. Add 10 mL HNO_3 (MDC) or 15 mL combined acids (MDO), dilute to volume with H₂O, mix, and transfer to acid-washed polyethylene bottle.

(6) *Std1*—Pipet 0.5 mL intermediate stock standard solution into a 100 mL acid-washed volumetric flask. Add 10 mL HNO_3 (MDC) or 15 mL combined acids (MDO), dilute to volume with H₂O, mix, and transfer to acid-washed polyethylene bottle.

(7) **Blank**—Add 10 mL HNO_3 (MDC) or 15 mL combined acids (MDO) into a 100 mL acid-washed volumetric flask, dilute to volume with H₂O, mix, and transfer to acid-washed polyethylene

	bottle. A	ll calibrat	tion solut	tions whe	en made	are stab	le for 1	week in
	glass vol	umetric fl	asks.	100/ 100		DI	100	. .
	(e) Sampler	wash so	lution-	10% HN	$O_3(v/v)$.—Dilute	e 100 m	nL trace
	metal-grade HNO3 to 1000 mL with H2O.							
	Table-2 (Su	ggested	concenti	ration o	of the s	six stan	dard so	olutions,
	mg/kg)							
	Element	Blank	Std 1	Std 2	Std 3	Std 4	Std 5	Std 6
	Calcium	0	7.5	15	30	75	150	225
	Magnesiu	0	2.5	0.5	10	25	50	75
	m Dhoamhamu	0	5	10	20	50	100	150
	s	0	5	10	20	50	100	150
	Potassium	0	10	20	40	100	200	300
	Sodium	0	5	10	20	50	100	150
	Copper	0	0.05	0.1	0.2	0.5	1.0	1.5
	Iron	0	0.25	0.5	1.0	2.5	5	7.5
	Manganes	0	0.001	0.002	0.005	0.012	0.025	0.037
	e	0	25	5	0.4	5	2.0	5
	Zinc	0	0.1	0.2	0.4	1.0	2.0	3.0
Sample Preparation	(a)Sample p	reparatio	n—					
	(1) Test sam	nple prep	aration-	–Homog	genize a	represen	tative sa	mple by
	grinding	as finely	as possib	ole and/or	r by prep	aring a s	slurry wi	th H2O.
	For exan	nple: Infar	nt cereals	and fort	ified mil	k powde	rs, prehe	at water
	at 50°C.	Prepare th	he slurry	by weigh	hing 10.0	0 ± 0.1 g	test san	ple and
	place int	to a 100 n	nL Erlen	meyer fl	ask; add	90.0 ±	0.1 g H2	20. Mix
	well with	n stopper.		•			U	
	(2) Test po	rtion pre	paration	Accui	rately w	eigh 0.5	0 ± 0.0	1 g test
	portion of	or sample	mass on	a dry w	eight bas	sis in the	e prepare	d slurry
	to MDC	vessel (1	$.00 \pm 0.0$	01 g into	o a 100	mL volu	imetric f	lask for
	MDO). [Note: An	optimal	analytica	l test poi	rtion mas	ss of 0.5	g (1.0 g
	for MDC	D) is based	d on an e	empirical	maximu	um energ	gy releas	e by the
	food of 3	8 kcal and	90–110%	6 recover	ry.]			
	Line the	MDC ve	essel wal	ls or Pa	steur pip	pet with	weighin	g paper
	during s	ample tra	insfer to	keep sa	mple fro	om adhe	ring to	sides of
	vessel or	use a Pa	steur pipe	et to tran	sfer liqu	id sampl	es. (Wei	gh fluid
	samples	or test por	tion fron	n slurry t	est samp	le directl	ly after n	nixing.)
	(Note: Remove weighing paper from sample prior to next step.)							
	Carefull	y add 5.0 :	$\pm 0.1 \text{ mL}$	L HNO3	into MD	C/MDO	vessel (a	and then
	5 mL F	1202 onl	y into I	VIDU Ve	essei).Lo	osery ca	ip MDC	vessel

	without sealing. Predigest for at least 10 min at room temperature or		
	until vigorous foaming subsides.		
	Close MDC vessels and distribute onto microwave carousel to ensure		
	uniform microwave power application on all samples.		
	(3) Food-grade salt sample preparation—Weigh 0.20 ± 0.01 g food-		
	grade salt (a minimum dilution factor of 500 is recommended) into a		
	100 mL volumetric flask. Add deionized water and 10 mL HNO3.		
	Dissolve salt and dilute to volume with deionized water.		
	b) Test portion digestion—		
	(1) Sample digestion —With power setting appropriate to MDC		
	(maximum power of 1600 W) and MDO models (maximum power of 600 W), and number of vessels used, heat MDO vessels at 200 ± 20°C for 20 min or ramp MDC temperature from ambient to 200 + 20°C in 15 min and hold at 200°C for 25 min		
	(Note: Yellow vapors will be emitted during the hydrolysis in MDO		
	vessels.)		
	Carefully remove the MDO vessels. Allow the vessels to cool down		
	to room temperature.		
	Add 5 ml HCl 35% (w/v) into MDO vessels and heat MDO vessels		
	at $200 \pm 20^{\circ}$ C for 20 min.		
	Cool vessels to room temperature before venting (MDC vessels).		
	Transfer the MDC digests to 50 mL (100 mL for MDO) volumetric		
	flasks. Dilute to volume with H2O and mix. (Note: A digestion is		
	judged complete when clear to yellow analytical solutions are		
	produced.)		
	Filter the digested solution using an ashless filter paper for turbid samples containing fat. Discard the first 20 mL filtrate and collect the remaining filtrate for analysis.		
	(Note: Membrane disc filters $(0.45 \ \mu m)$ are not recommended as they are		
	generally not metal-free.)		
	Transfer to polyethylene containers within 2 h.		
	Dilute the samples that are found to be above the standard curve		
	range or have total content of minerals higher than 1000 mg/L with		
	H2O.		
Mathed of analysis	1) Make a solibustion survey using either weighted linear or superstation		
Method of analysis	1) Make a canoration curve using either weighted intear of quadratic		
	regression with correlation coefficients of at least 0.9999 from seven		
	standards prepared from intermediate standard solution, including a		
	blank (Std 0) and six suggested concentrations of the standard		
	solution (Std1–Std6) shown in Table-2and expressed in mg/kg.		
	2) Analyze test solutions using an ICP-OES instrument calibrated with		
	the working standard solutions.		
	3) Insert a working standard or other suitable quality control solution		

	every 10 test portions to monitor for instrument drift. The inclusion	
	of a digestion blank, a sample duplicate, and known reference	
	materials is highly encouraged.	
Calculation with units of	The concentration (C) of each element, in mg/kg, is calculated as follows:	
expression	a x V x F	
	C=	
	m	
	where	
	C = concentration in the test portion sample (mg/kg);	
	a = concentration (mg/L) of the element in the digest solution as	
	obtained from instrument;	
	V = volume (mL) of the test solution after being made up (i.e., 50	
	mL for MDC and 100 mL for MDO);	
	F = dilution factor of the test solution;	
	m = weight of the test portion (g).	
Inference		
(Qualitative Analysis)		
Reference	AOAC Official Method 2011.14	
Approved by	Scientific Panel on Methods of Sampling and Analysis	

एफएसएसएआई <u>र्रेडड</u> वा	Method for the analysis of trace elements in Water by Inductively Coupled Plasma Mass Spectrometry (ICP-MS)		
नारपाव भाव युद्धा जुद्धा जार मानव आवस्त्र Food Safey and Shardina Authoniy of India स्वास्थ्य और परिवार केल्याण मंत्रालय Ministry of Health and Family Welfare			
Method No.	FSSAI 09.003:2024	Revision No. & Date	0.0
Scope	This method specifies antimony, arsenic, barin calcium, cerium, chr europium, gadolinium, indium, iridium, lant manganese, molybdenu platinum, potassium, ruthenium, samarium, terbium, tellurium, tho vanadium, yttrium, ytterbium, zinc, and z surface water, groundwa The working range of encountered. In drinkin of application is betwee The detection limits of r	the determination of the um, beryllium, bismuth, bor omium, cobalt, copper, gallium, germanium, gold thanum, lead, lithium, li um, neodymium, nickel, pa praseodymium, rubidium, scandium, selenium, silve rium, thallium, thulium, ti irconium in water [for exa ater, wastewater and elutes. depends on the matrix a g water and relatively unpol n 0.1µg/l and 1.0 µg/l for mo most elements are affected b	elements aluminium, on, cadmium, cesium, dysprosium, erbium, l, hafnium, holmium, utetium, magnesium, alladium, phosphorus, rhenium, rhodium, r, sodium, strontium, n, tungsten, uranium, ample drinking water, und the interferences luted waters, the limit ost elements.
Caution	and depend predomin available.	antly on the laboratory	air-handling facilities
	 Use fume hood and gloves, and approp glassware and prepa Inductively coupled protection from ultra Reagents should be to these materials sh Wear gloves, a lab ca Exercise caution wh Always add acid to v of causing severe e contact with any par copious quantities of 	wear full personal laborato riate eye protection (safety ring standards or test portion plasmas should only be vi aviolet emissions. regarded as potential health would be minimized. Follow oat, and safety glasses while hen handling and dispensin water. Acids are caustic cher ye and skin damage. If ac t of the body, quickly wash water for at least 15 minute	ry protective clothing, glasses) when using ns with acid solutions. ewed with proper eye hazards and exposure universal precautions. handling reagent. og concentrated acids. micals that are capable ids or bases come in the affected area with s.
Principle	Multi-element determin plasma mass spectrome -introduction of a mea example by pneumat from the plasma ca	ation of 62 elements by indu try (ICP-MS) consists of the asuring solution into a radio ic nebulization) where ener- use dissolution, atomizatio	following steps: frequency plasma (for rgy transfer processes on and jonization of

	elements;
	-extraction of the ions from plasma through a differentially pumped vacuum interface with integrated ion optics and separation on the basis of their mass-to-charge ratio by a mass spectrometer (for instance a quadrupole MS);
	-transmission of the ions through the mass separation unit (for instance a quadrupole) and detection, usually by a continuous dynode electron multiplier assembly, and ion information processing by a data handling system;
	-quantitative determination after calibration with suitable calibration solutions.
	The relationship between signal intensity and mass concentration is usually a linear one over at least five orders of magnitude.
Apparatus/Instruments	The stability of samples, and measuring and calibration solutions depends to a high degree on the container material. The material shall be checked according to the specific purpose. For the determination of elements in a very low concentration range, glass or polyvinyl chloride (PVC) should not be used. Instead, it is recommended to use perfluoroalkoxy (PFA), hexafluoroethene propene (FEP) or quartz containers, cleaned with hot, concentrated nitric acid in a closed system. For the determination of elements in a higher concentration range, high density polyethene (HDPE) or polytetrafluoroethene (PTFE) containers are also allowed for the collection of samples.
	Immediately before use, all glassware should be washed thoroughly with warm diluted nitric acid [for example $w(HNO3) = 10 \%$], and then rinsed several times with water.
	The use of piston pipettes is permitted and also enables the preparation of lower volumes of calibration solutions. The application of dilutors is also allowed. Every batch of pipette tips and disposable plastics vessels shall be tested for impurities.
	(1) Mass spectrometer. A mass spectrometer with inductively coupled plasma (ICP) suitable for multi-element and isotope analysis isrequired. The spectrometer should be capable of scanning a mass range from 5 m/z (AMU) to 240 m/z (AMU) with a resolution of at least 1 mr/z peak width at 5 % of peak height (mr = relative mass of an atom species; z = charge number).

	The instrument may be fitted with a conventional or extended dynamic range detection system.			
	(2) Mass-flow controller. A mass-flow controller on the nebulizer gas supply is required. Mass-flow controllers for the plasma gas and the auxiliary gas are also useful. A water cooled spray chamber may be of benefit in reducing some types of interferences (for example from polyatomic oxide species).			
	NOTE The plasma is very sensitive to variations in the gas flow rate.			
	(3) Nebulizer with variable speed peristaltic pump, for which information on different types of nebulizers is given in ISO 17294-1:—, 5.1.2.			
	(4) Argon gas supply, of high purity grade, for instance 99,99 %.			
	 (5) Glassware, consisting of the following: -volumetric flasks, for example 50 ml, 100 ml, 500 ml and 1 000 ml; -conical (Erlenmeyer) flasks, for example 100 ml; -pipettes, for example 1 ml, 2,5 ml, 10 ml, 20 ml and 25 ml. 			
	 (6) Storage bottles, for the stock, standard, calibration and sample solutions. For the determination of elements in a normal concentration range, high density polyethene (HDPE) or polytetrafluoroethene (PTFE) bottles are sufficient for the storage of samples. For the determination of elements in an ultratrace level bottles made from perfluoroalkoxy (PFA) or hexafluoroethene propene (FEP) should be preferred. In any case the user has to check the suitability of the chosen containers. 			
Materials and Reagents	For the determination of elements at trace and ultratrace level the			
Materiais and Reagents	reagents shall be of adequate purity. The concentration of the analyte or interfering substances in the reagents and the water should be negligible compared to the lowest concentration to be determined.			
	For preservation and digestion, nitric acid should be used to minimize interferences by polyatoms.			
	 Water, Grade 1, for all sample preparation and dilutions. Nitric acid, sp.g.(HNO₃) = 1,4 g/ml. Hydrochloric acid, sp.g. (HCl) = 1,16 g/ml. Hydrochloric acid, <i>dilute</i>(HCl) = 0,2 mol/l. Sulfuric acid, sp.g.(H₂SO₄) = 1,84 g/ml. Hydrogen peroxide, w(H₂O₂) = 30 %. 			

	 7) Element stock solutions, sp.g.= 1 000 mg/l each of Ag, Al, As, Au, B, Ba, Be, Bi, Ca, Cd, Ce, Co, Cr, Cs, Cu, Dy, Er, Eu, Ga, Gd, Ge, Hf, Ho, In, Ir, K, La, Li, Lu, Mg, Mn, Mo, Na, Nd, Ni, P, Pb, Pd, Pr, Pt, Rb, Re, Rh, Ru, Sb, Sc, Se, Sm, Sn, Sr, Tb, Te, Th, Tl, Tm, U, V, W, Y, Yb, Zn, Zr. Both single-element stock solutions and multi-element stock solutions with adequate specification stating the acid used and the preparation technique are commercially available. Element stock solutions with different concentrations of the analytes (for example 1000 mg/l) are also allowed.
	Anion stock solutions, = 1 000 mg/l each of Cl, PO4 ⁻³ , SO4 ⁻² . Prepare these solutions from the respective acids. The solutions are also commercially available. Anion stock solutions with different concentrations of the analytes (for example 100 mg/l) are also allowed.
Preparation of Reagents	1) Multi-element calibration solutions Depending on the scope, different multi-element standard solutions may be necessary. In general, when combining multi-element standard solutions, their chemical compatibility and the possible hydrolysis of the components shall be regarded. Care shall be taken to prevent chemical reactions (for example precipitation).
	The multi-element standard solutions are considered to be stable for several months, if stored in the dark.
	This does not apply to multi-element standard solutions that are prone to hydrolysis, in particular solutions of Bi, Mb, Mo, Sn, Sb, Te, W, Hf and Zr.
	(a) Multi-element standard solution A, consisting of the following: a(A = S a) = 20 mg/l
	$\rho(As, Se) = 20 \text{ mg/r}$ $\rho(Ag, Al, B, Ba, Be, Bi, Ca, Cd, Ce, Co, Cr, Cs, Cu, La, Li, Mg, Mn,$ Ni, Pb, Rb, Sr, Th, Tl, U, V, Zn)= 10 mg/l
	Pipette 20 ml of each element stock solution (As, Se) and 10 ml of each element stock solution (Ag, Al, B,Ba, Be, Bi, Cd, Ce, Co, Cr, Cs, Cu, La, Li, Mn, Ni, Pb, Rb, Sr, Th, Tl, U, V, Zn) into a 1 000 ml volumetricflask.
	Add 10 ml of nitric acid. Bring to volume with water and transfer to a suitable storage bottle.
	Multi-element standard solutions with more elements may be used provided it is verified that these solutions are stable and no chemical reactions occur. This shall be checked again a few days after the first

use (sometimes precipitation can occur after preparation)
(b) Multi-element standard solution B, consisting of the following: ρ (Au, Mo, Sb, Sn, W, Zr) = 5 mg/l.
Pipette 2,5 ml of each element stock solution (Au, Mo, Sb, Sn, W, Zr) into a 500 ml volumetric flask. Add 40 ml of conc. hydrochloric acid. Bring to volume with water and transfer to a suitable storage bottle.
(c) Reference-element solution (internal standard solution).
The choice of elements for the reference-element solution depends on the analytical problem. Solutions of these elements should cover the mass range of interest. The concentrations of these elements in the sample should be negligibly low. The elements In, Lu, Re, Rh and Y have been found suitable for this purpose.
For example, the following reference-element solutions may be used: $\rho(Y, Re) = 5 \text{ mg/l}$ Pipette 5 ml of each element stock solution (Y, Re) into a 1000 ml volumetric flask. Add 10 ml of nitric acid. Bring to volume with water and transfer to a suitable storage bottle.
2) Multi-element calibration solutions. Choose the mass concentrations of the calibration solutions to allow for a sufficient precision and reproducibility and ensure that the working range is covered.
The stability of the calibration solutions should be checked regularly. Due to their rather low respective mass concentrations, they should be replaced by freshly prepared solutions at least every month or more frequently for elements which are prone to hydrolysis. In special cases, daily preparation is necessary. The user has todetermine the maximum stability period of the calibration solutions.
Transfer the calibration solution(s) A and B to suitable storage bottles. If the determination is carried out after previous digestion the matrix of the multi-element calibrationsolution(s) A and B shall be adjusted to that of the digests. The working range in general may cover the range of 0.1 μ g/l to 50

 μg/l or a part of this. (a) Multi-element calibration solution(s) A. Prepare the calibration solution(s) A that cover the required working range by diluting the multi-element standard solution A.
Add 10 ml of nitric acid per litre and bring up to volume with water. If necessary, add reference-element solutionto a concentration of for example 50 μ g/l of the reference elements before bringing up to volume.
 (b) Multi-element calibration solution(s) B. Prepare the calibration solution(s) B that cover the required working range by diluting the multi-elementstandard solution B Add 5 ml of hydrochloric acid per litre and bring up to volume with water. If necessary add reference-element solution to a concentration of, for example, 50 µg/l of the reference-elements before bringing up to
volume.3) Blank calibration solutions.High demands shall be set concerning the purity. The user should ensure that the background levels of the analytes are not significant to the results of the analysis.
(a) Blank calibration solution A. Pipette 0,5 ml of nitric acid to a 100 ml volumetric flask made for example from perfluoroalkoxy (PFA) or hexafluoroethene propene (FEP) and bring to volume with water. If necessary, add reference- elementsolution to a concentration of, for example, 50 μ g/l of the reference-elements before bringing up to volume. If the determination is carried out after previous digestion the matrix of the blank calibration solution A shall be adjusted to that of the digests.
(b) Blank calibration solution B . Pipette 1,0 ml of conc. hydrochloric acid to a 100 ml volumetric flask made for example from perfluoroalkoxy (PFA) or hexafluoroethene propene (FEP) and bring to volume with water. If necessary add reference elementsolution to a concentration of for example 50 μ g/l of the reference-elements before bringing up to volume.
If the determination is carried out after previous digestion the matrix of the blank calibration solution Bshall be adjusted to that of the digests.
4) Optimization solution.

	 The optimization solution serves for mass canoration and for optimization of the apparatus conditions, for example adjustment of maximal sensitivity with respect to minimal oxide formation rate and minimal formation of doubly charged ions. It should contain elements covering the entire mass range, as well as elements prone to a high oxide formation rate or to the formation of doubly charged ions. For example, an optimization solution containing Mg, Cu, Rh, In, Ba, La, Ce, U and Pb is suitable. Li, Be and Bi are less suitable because they tend to cause memory effects. The mass concentrations of the elements used for optimization should be chosen to allow count rates of more than 10 000 counts/s.
	5) Matrix solution. The matrix solutions serve to determine the correction factors for the corresponding equations. High demandsare made concerning the purity of the basic reagents due to the high mass concentrations. The user shouldensure that the background levels of the analytes in the matrix solution are not significant to the results of theanalysis. The composition may be as follows: $\rho(Ca) = 200 \text{ mg/l};$ $\rho(Cl-) = 300 \text{ mg/l};$ $\rho(PO_4)^{-3} = 25 \text{ mg/l};$ $\rho(SO_4)^{-2} = 100 \text{ mg/l}.$
	Pipette 200 ml of element stock solution (Ca), 300 ml of anion stock solution (Cl ⁻), 25 ml of anion stock solution (PO ₄) ⁻³ and 100 ml of anion stock solution (SO ₄) ⁻² to a 1 000 ml volumetric flask. Add 10 ml of nitric acid. Bring to volume with water and transfer to a suitable storage bottle.
Sample Preparation	 Sampling Due to the extremely high requirements concerning purity in trace and ultra trace analysis any impurity shall be avoided. The mass concentrations of the elements may change rather rapidly after sampling due to adsorption or desorption effects. This is of special importance, for example in the case of Ag, As, B, Se and Sn. The choice of the container material depends on the mass concentration of the elements to be determined. For the determination of the dissolved fraction of the elements, filter the sample through a membrane filter nominal pore size 0.45 um. Every
	batch of membrane filters shall be tested for impurities. Use several portions of the sample to rinse the filter assembly, discard and then collect the required volume of filtrate.

	Add 0.5 ml of nitric acid per 100 ml of sample. Ensure that the pH is less than 2; otherwise, add nitric acid as required.
	In the case of determination of elements forming compounds that tend to be hydrolysed, for example Sb, Sn,W or Zr, add to an additional sample 1.0 ml of hydrochloric acid per 100 ml of water. Ensure that the pHis less than 1; otherwise, add more hydrochloric acid as required.
	Sample pre-treatment
	 Determination of the mass concentration of dissolved elements without digestion Continue according to sampling procedure, using the acidified filtrate specified in sampling. If experience has shown that no significant amounts of particles occur, the filtration may be omitted. Those samples shall be colourless and shall have a turbidity <1.5 FNU (formazinenephelometric unit).
	 2) Determination of the total mass concentration after digestion The mass concentration determined according to this clause does not in all cases represent the total mass concentration. Instead, only the portion that is determinable according to the distinct digestion for a given element composition will be analyzed. Some elements and their respective compounds (for example, silicates and aluminum oxide) will be dissolved incompletely using this procedure.
	For the determination of tin, the following digestion may be used:
	 a) Add 0.5 ml of sulfuric acid and 0.5 ml of hydrogen peroxide to 50 ml of the homogenized water sample. b) Evaporate the mixture until SO3vapors is formed. c) In case of incomplete digestion, add a small portion of water after cooling, add hydrogen peroxide once more and repeat the treatment. d) Dissolve the residue in diluted hydrochloric acid and adjust the volume to 50 ml with water. e) Treat a blank in the same way.
	Special digestion methods may be necessary if Sb, W or Zr is to be determined. If experience has shown that the elements will be recovered quantitatively without decomposition, the digestion may be omitted
Mathad - family 1	(a) Composition, the digestion may be officied.
ivietnod of analysis	1) General- In ICD MS mothods the relationship between reconnect sets
	in ICP-IVIS methods, the relationship between measured count rates
	and mass concentrations of an element is known to be linear over
	several orders of magnitude. Therefore, linear calibration curves may

be used for quantification.
About 30 min prior to measurement, adjust the instrument to working condition. Before each series of measurement the sensitivity and the stability of the system should be checked using the optimization solution.
Adjust the instrument with the aid of the optimization solution to minimize interfering effects (for example oxide formation, formation of doubly charged ions) allowing sufficient sensitivity.
Define the rinsing times depending on the length of the flow; in the case of large variations in mass concentrations in the measuring solutions, allow for longer rinsing periods.
The use of a reference-element solution is recommended. Add the reference-element solution to the matrix solution, to all multi-element calibration solutions, to the blank calibration solutions, and to all measuring solutions. The mass concentration of the reference-elements shall be the same in all solutions. A mass concentration of $\rho \Box(Y, Re) = 50 \mu g/l$ is often suitable.
ICP-MS has excellent multi-element capability. The sensitivity of determination depends on a number of parameters (nebulizer flow, radiofrequency power, lens voltage, lens voltage mode, etc.). The optimal instrument settings cannot be achieved for all elements simultaneously.
 2) Calibration of the ICP-MS system When the analytical system is first evaluated, and at intervals afterwards, establish a calibration curve for each element to be determined using at least five measuring points (for example, the blank calibration solution and four calibration solutions). For work on a daily basis, one blank solution and one to two calibration solutions are enough but check the validity of the calibration curve with a certified reference sample, a standard sample, or a suitable internal control sample. Typically proceed as follows: Prepare and measure the blank calibration solutions and the multielement calibration solutions. According to the manufacturer's instruction, set up a calibration graph. Each reference point should be themean of at least two replicates. Take into account possible discrepancies in the isotope composition between the calibration solutions and themeasuring solutions (for example relevant for Li, Pb, U).

	 3) Measurement correction factor In order to eval matrix solutions 4) Measurement of After establishing samples. Within sufficie 	of the matrix solution for evaluation of ors uate and to update the correction factors, measur at regular intervals within a measuring cycle. of the samples ng the calibration curves, measure the blanks and nt small intervals (for example, every ten sam	the e the d the ples)
	check the accur standard sampl calibrate.	e or one internal control sample. If necessary	one , re-
	Some elements from the sampl effects shall be	(for example Ag, B, Be, Li, Th) are rinsed very sl e inlet system. After high count rates, these me checked by measuring a blank calibration solution.	owly mory
Calculation with units of	Calculation		
expression	The mass concentr	ations for each element are determined with the a	id of
	the instrument sol	tware. Carry out the following single steps for	each
	element.		
	a) Correct the	count rates according to the respective equation	ns as
		count rates according to the respective equation	ins as
	below: Exa	mples for suitable isotopes with their rel	ative
	below: Exa atomicmas	mples for suitable isotopes with their rel uses and equations for correction	ative
	below:Exa atomicmas	mples for suitable isotopes with their rel ses and equations for correction	ative
	below:Exa atomicmas Element	mplesforsuitableisotopeswiththeirrelsesand equations for correctionRecommended isotope and inter-element	ative
	below:Exa atomicmas Element	mples for suitable isotopes with their releases and equations for correctionRecommended isotope and inter-element correction	ative
	Element As	mples for suitable isotopes with their releases and equations for correctionRecommended isotope and inter-element correction75As -3.127 (77Se- 0.815 82Se) or75As -3.127 (77Se- 0.815 82Se) or	ative
	below:Exa atomicmas Element As	mples for suitable isotopes with their releases and equations for correctionRecommended isotope and inter-element correction75As -3.127 (77Se- 0.815 82Se) or 75As -3.127 (77Se + 0.322 0 78Se)	ative
	Element As	mples for suitable isotopes with their releases and equations for correctionRecommended isotope and inter-element correction75As -3.127 (77Se- 0.815 82Se) or 75As -3.127 (77Se + 0.322 0 78Se)128Da = 0.0000008 120La = 0.002 825 140Ca	ative
	Element As Ba	mples for suitable isotopes with their releases and equations for correctionRecommended isotope and inter-element correction75As -3.127 (77Se- 0.815 82Se) or 75As -3.127 (77Se + 0.322 0 78Se)138Ba -0.0009008 139La - 0.002 825 140Ce14Cd 0.02684 118Sp	ative
	Element Ba Cd Below:Exal As	mples for suitable isotopes with their releases and equations for correctionRecommended isotope and inter-element correction75As -3.127 (77Se- 0.815 82Se) or 75As -3.127 (77Se + 0.322 0 78Se)138Ba -0.0009008 139La - 0.002 825 140Ce 114Cd-0.02684 118Sn74Ge = 0.1385 82Se	ative
	below:Exa atomicmas Element As Ba Cd Ge In	mples for suitable isotopes with their releases and equations for correctionRecommended isotope and inter-element correction75As -3.127 (77Se- 0.815 82Se) or 75As -3.127 (77Se + 0.322 0 78Se)138Ba -0.0009008 139La - 0.002 825 140Ce 114Cd-0.02684 118Sn74Ge -0.1385 82Se 115In -0.01486 118Sn	ative
	Ba Cd Ge In Mo	mples for suitable isotopes with their releases and equations for correction Recommended isotope and inter-element correction 75As -3.127 (77Se- 0.815 82Se) or 75As -3.127 (77Se+ 0.322 0 78Se) 138Ba -0.0009008 139La - 0.002 825 140Ce 114Cd-0.02684 118Sn 74Ge -0.1385 82Se 115In -0.01486 118Sn 98Mo -0.1106 101Ru	ative
	below:Exa atomicmas Element As Ba Cd Ge In Mo Ni	mples for suitable isotopes with their releases and equations for correction Recommended isotope and inter-element correction 75As -3.127 (77Se- 0.815 82Se) or 75As -3.127 (77Se+ 0.322 0 78Se) 138Ba -0.0009008 139La - 0.002 825 140Ce 114Cd-0.02684 118Sn 74Ge -0.1385 82Se 115In -0.01486 118Sn 98Mo -0.1106 101Ru 58Ni -0.04825 54Fe	ative
	below:ExalatomicmasElementAsBaCdGeInMoNiPb	mples for suitable isotopes with their releases and equations for correction Recommended isotope and inter-element correction 75As -3.127 (77Se- 0.815 82Se) or 75As -3.127 (77Se+ 0.322 0 78Se) 138Ba -0.0009008 139La - 0.002 825 140Ce 114Cd-0.02684 118Sn 74Ge -0.1385 82Se 115In -0.01486 118Sn 98Mo -0.1106 101Ru 58Ni -0.04825 54Fe 208Pb + 207Pb + 206Pb	ative
	below:ExalatomicmasElementAsBaCdGeInMoNiPbSe	mples for suitable isotopes with their relesses and equations for correction Recommended isotope and inter-element correction 75As -3.127 (77Se- 0.815 82Se) or 75As -3.127 (77Se + 0.322 0 78Se) 138Ba -0.0009008 139La - 0.002 825 140Ce 114Cd-0.02684 118Sn 74Ge -0.1385 82Se 115In -0.01486 118Sn 98Mo -0.1106 101Ru 58Ni -0.04825 54Fe 208Pb + 207Pb + 206Pb 82Se- 1.009 83Kr	ative
	below:ExalatomicmasElementAsBaCdGeInMoNiPbSeSn	mples for suitable isotopes with their releases and equations for correction Recommended isotope and inter-element correction 75As -3.127 (77Se- 0.815 82Se) or 75As -3.127 (77Se+ 0.322 0 78Se) 138Ba -0.0009008 139La - 0.002 825 140Ce 114Cd-0.02684 118Sn 74Ge -0.1385 82Se 115In -0.01486 118Sn 98Mo -0.1106 101Ru 58Ni -0.04825 54Fe 208Pb + 207Pb + 206Pb 82Se- 1.009 83Kr 120Sn 0.013 44 125Te	ative
	below:ExalatomicmasElementAsBaCdGeInMoNiPbSeSnV	mples for suitable isotopes with their relesses and equations for correction Recommended isotope and inter-element correction 75As -3.127 (77Se- 0.815 82Se) or 75As -3.127 (77Se + 0.322 0 78Se) 138Ba -0.0009008 139La - 0.002 825 140Ce 114Cd-0.02684 118Sn 74Ge -0.1385 82Se 115In -0.01486 118Sn 98Mo -0.1106 101Ru 58Ni -0.04825 54Fe 208Pb + 207Pb + 206Pb 82Se- 1.009 83Kr 120Sn 0.013 44 125Te 51V - 3.127 (53Cr -0.113 4 52Cr)	ative
	below:Exa atomicmas Element As Ba Cd Ge In Mo Ni Pb Se Sn V W	mples for suitable isotopes with their releases and equations for correction Recommended isotope and inter-element correction 75As -3.127 (77Se- 0.815 82Se) or 75As -3.127 (77Se+ 0.322 0 78Se) 138Ba -0.0009008 139La - 0.002 825 140Ce 114Cd-0.02684 118Sn 74Ge -0.1385 82Se 115In -0.01486 118Sn 98Mo -0.1106 101Ru 58Ni -0.04825 54Fe 208Pb + 207Pb + 206Pb 82Se- 1.009 83Kr 120Sn 0.013 44 125Te 51V - 3.127 (53Cr -0.113 4 52Cr) 184W -0,001 242 189Os	ative
	below:Exa atomicmas Element As Ba Cd Ge In Mo Ni Pb Se Sn V W	mples for suitable isotopes with their relesses and equations for correction Recommended isotope and inter-element correction 75As -3.127 (77Se- 0.815 82Se) or 75As -3.127 (77Se + 0.322 0 78Se) 138Ba -0.0009008 139La - 0.002 825 140Ce 114Cd-0.02684 118Sn 74Ge -0.1385 82Se 115In -0.01486 118Sn 98Mo -0.1106 101Ru 58Ni -0.04825 54Fe 208Pb + 207Pb + 206Pb 82Se- 1.009 83Kr 120Sn 0.013 44 125Te 51V - 3.127 (53Cr -0.113 4 52Cr) 184W -0,001 242 189Os	ative
	below:Exa atomicmas Element As Ba Cd Ge In Mo Ni Pb Se Sn V W	mples for suitable isotopes with their releases and equations for correction Recommended isotope and inter-element correction 75As -3.127 (77Se- 0.815 82Se) or 75As -3.127 (77Se+ 0.322 0 78Se) 138Ba -0.0009008 139La - 0.002 825 140Ce 14Cd-0.02684 118Sn 74Ge -0.1385 82Se 115In -0.01486 118Sn 98Mo -0.1106 101Ru 58Ni -0.04825 54Fe 208Pb + 207Pb + 206Pb 82Se- 1.009 83Kr 120Sn 0.013 44 125Te 51V - 3.127 (53Cr -0.113 4 52Cr) 184W -0,001 242 189Os	ative ation,

	 c) Determine the mass concentrations of samples with the aid of the count rates and the calibration graphs. d) Correct the results taking into account the mass concentrations from the blank calibration solutions and incorporate all dilution steps in the calculation. If the sample is digested a correction for the procedure blank shall be used if appropriate (digestion blank solution). Report the results to as many significant figures as are acceptable according to the precision of the measuring values. Examples- Copper (Cu) 0.142 mg/l. Cadmium (Cd) 0.50 µg/l
Inference (Qualitative Analysis)	
Reference	ISO 17294 Water quality — Application of inductively coupled plasma mass spectrometry (ICP-MS)
Approved by	Scientific Panel on Methods of Sampling and Analysis

एफएसएसएआई जित्र के प्रियम के प्राधिकरण मजव विक्रंश का विकारण मालिय स्वारय और परिवार कल्याण मंत्रालय Ministry of Health and Family Wellare	Method for the analysis of Arsenic, Cadmium, Mercury, and Lead in Foods by Pressure Digestion and Inductively Coupled Plasma-Mass Spectrometry		
Method No.	FSSAI 09.004:2024	Revision No. & Date	0.0
Scope	Applicable to the deter	rmination of As, Cd, Hg, a	nd Pb in a variety of
	foods by pressure di	gestion and inductively	coupled plasma-mass
	spectrometry (ICP-MS)). Method is capable of det	termining As, Cd, Pb,
	and Hg at or above respectively.	0.06, 0.03, 0.04, and 0.0	9 mg/kg dry matter,
Caution	 Use fume hood and gloves, and approp glassware and prepa Inductively coupled protection from ultr Reagents should be to these materials sl Wear gloves, a lab c Exercise caution w Always add acid to of causing severe of contact with any pa copious quantities or 	wear full personal laborato riate eye protection (safety uring standards or test portion l plasmas should only be vi aviolet emissions. regarded as potential health hould be minimized. Follow coat, and safety glasses while hen handling and dispensir water. Acids are caustic cher eye and skin damage. If ac rt of the body, quickly wash f water for at least 15 minute	ry protective clothing, glasses) when using ns with acid solutions. ewed with proper eye hazards and exposure universal precautions. e handling reagent. ng concentrated acids. micals that are capable cids or bases come in the affected area with es.
Principle	Foodstuffs are mineralize elevated temperature ar heating. The mineralize to produce the test solu- samples may be dried at The test solution, obta sample introduction sys- the aerosol is transferr plasma. The high temper to atomize and ionize plasma by a set of sam spectrometer by vacu- mass/charge ratio (m/z detector.	ized (digested) in closed ve ad pressure by conventional d sample is diluted with wat attion. Test samples may be on nd results corrected for mois attend by pressure digestion attend the ICP-MS instrum- red to high frequency indu- erature of the plasma is used the elements. The ions attend pler and skimmer cones and num, where the ions are and determined by a puls	essels by nitric acid at or microwave-assisted er to a defined volume either dry or wet. Test ture. , is transferred to the ent and nebulized, and ctively coupled argon to dry the aerosol and re extracted from the l transferred to a mass e separated by their e-count and/or analog
Apparatus/Instruments	1) Pressure digestion	-Commercially available	microwave digestion
	system or high-pres	ssure asher for acid digestic	on in an acid-resistant
	by conventional or	microwave-assisted heating	in a sealed vessel in a
	by conventional of	interovieve assisted neating	in a source vesser in a

	pressure container.
	2) Inductively coupled plasma-Mass spectrometer (ICP-MS)—Mass
	spectrometer with inductively coupled argon plasma operating in a
	mass range from 5–240 amu Mass spectrometers with additional
	reaction or collision cells may be used to reduce the influence of
	polyatomic ions. An ICP MS instrument having a nebulizing system
	with a low pulsation periotaltic nump should be agained with a mass
	with a low pursation peristance pump should be equipped with a mass
	now controller for the nebulizer gas.
Materials and Reagents	1) Nitric acid.—Not less than 65%, with a density of ca 1.4 g/mL.
	2) Hydrogen peroxide (H_2O_2) .—30%. 2) Water Specific resistance > 18 magshim am
	3) water.—Specific resistance >18 megonin-cili. 4) Element stock solutions. Commercially available single element or
	a) Element stock solutions- Commercially available single element of multi-element standards with a concentration of 1000 mg/L are
	recommended
Preparation of Reagents	1) Diluted Hg stock solution —Hg = 10 mg/L . prepared by dilution of 1
	mL Hg and 1 mL nitric acid with water to the mark of a 100 mL
	volumetric flask
	2) Diluted multi-element stock solution —The concentration levels of
	the elements in the diluted multi-element stock solution may be
	chosen with reference to the type of samples to be analyzed. The
	following descriptions are given as an example: $As = 20 \text{ mg/L}$ and
	Cd and $Pb = 10 mg/L$ Pipet 2 mL As stock solution and 1 mL of the
	single element standards Cd and Ph each in a 100 mL volumetric
	flash add 1 mL nitria acid dilute with water to the mark and transfer
	mask, and 1 mL mitric acid, diffue with water to the mark, and transfer
	the solution into a suitable vessel.
	3) Multi-alament calibration stock solution According to the
	s) Wulti-element canoration stock solution—According to the
	example given, the multi-element canoration stock solution contains
	100 µg As/L and 50 µg/L for Cd, Hg, and Pb. Pipet 0.5 mL of diluted
	Hg stock solution and 0.5 mL of the diluted multi-element stock
	solution into a 100 mL volumetric flask, add 1 mL nitric acid, dilute
	with water to the mark, and transfer the solution into a suitable vessel
	(PFA or quartz is recommended).
	4) Calibration solutions —For calibration of the instrument a set of at
	least three different concentrations are used (in addition to the
	standard reagant blank). The concentration range should be chosen
	with respect to the concentrations expected and with respect to the
	time and with respect to the concentrations expected and with respect to the
	linear dynamic range. It is important that the concentration of nitric

	acid in the sample solutions and the calibration solutions are
	approximately the same. The calibration solutions should be prepared
	freshly before use.
	5) Standard reagent blank—Standard reagent blank contains water
	and the same amount of acid used in the calibration stock solution.
	6) Internal standard stock solution—Rh and Lu with a concentration
	of 1000 mg/L is recommended. Alternatively, other internal standards
	may also be used. Au is used to stabilize $H\alpha$ in the solution and to
	reduce memory effects. The internal standards should cover the mass
	range used for determination of the elements. Their concentrations in
	the test solutions should be peoligible
	the test solutions should be negligible.
	7) Diluted internal standard stock solution —The concentration of the
	diluted internal standard solution should be high enough to give a
	sufficient signal intensity For example Au Rh and Lu at 5 mg/I
	can be used Pinet 0.5 mL of Au Ph and Lu internal standard stock
	call be used. Tipet 0.5 Int of Au, Kii, and Lu Internal standard stock
	solution each into a 100 mL mask, add 1 mL mutic acid, dilute to
	volume with water, and transfer the solution into a suitable vessel.
	8) Optimization solution —The optimization solution is used for check
	and optimizing procedures during set up of the ICP-MS instrument. It
	is used for mass calibration purposes and for adjustment of maximum
	sensitivity at low rates of oxides and doubly charged ions. The
	optimizing solution should contain elements that cover the whole
	mass range giving a high rate of oxides and double charged ions. The
	solutions recommended by the manufacturer of the ICP-MS
	instrument may be used. A solution containing, e.g., Y, Rh, Ce, and
	Pb is suitable for those purposes. The concentration of these elements
	should be chosen in order to achieve a count rate of 10 000-100 000
	cps.
Sample Preparation	1) Equipment which does not impart any or least possible
	contamination particularly with respect to the analytes of the interest
	is used to homogenize the sample.
	Caution: Digestion of carbon-rich materials (e.g., carbohydrates,
	rats, oils) can result in explosions.
	2) Moisture content (optional)—To avoid possible losses of volatile
	elements such as As and Hg, the determination of moisture content

		should be done on separate homogenized test portions rather than on
		test portions used for analysis. Determination of optimal drying
		temperatures and times are needed to avoid mass loss due to loss of
		volatile oils. Where previous drying studies have been conducted,
		recommended temperatures and drying times can be used. For oven
		drying, temperatures may range from 80°C to 110°C until constant
		mass is reached. Alternatively samples can be dried over
		Mg(ClO4)2 in a sealed desiccators until constant mass is reached.
		The drving factor necessary to convert the mass of the stored
		material to a dry-mass basis should be determined at each use to
		account for changes in mass due to the exposure of the material to
		the laboratory atmosphere.
	3)	Food samples are digested in sealed pressure digestion vessels. The
	- /	sample mass is chosen to match the capacity of the digestion vessel
		following the manufacturer's instructions which may also limit the
		carbon content to be digested. The test sample portion and the
		appropriate amounts of nitric acid and hydrogen peroxide are placed
		in the digestion vessel. The vessel is secured in the pressure digester
		and the temperature/pressure program implemented.
		and the temperature, pressure program impremented.
	Mi	crowave-assisted wet digestion:
	Mi (a)	crowave-assisted wet digestion: Weigh approximately 0.20 g dry weight sample material into the
	Mi (a)	Acrowave-assisted wet digestion: Weigh approximately 0.20 g dry weight sample material into the digestion container.
	Mi (a) (b)	crowave-assisted wet digestion: Weigh approximately 0.20 g dry weight sample material into the digestion container. Each digestion series must contain two reagent blanks (nitric acid
	M i (a) (b)	Acrowave-assisted wet digestion: Weigh approximately 0.20 g dry weight sample material into the digestion container. Each digestion series must contain two reagent blanks (nitric acid and hydrogen peroxide without sample materials). Include at least
	M i (a) (b)	Acrowave-assisted wet digestion: Weigh approximately 0.20 g dry weight sample material into the digestion container. Each digestion series must contain two reagent blanks (nitric acid and hydrogen peroxide without sample materials). Include at least one certified reference material corresponding to the amount
	Mi (a) (b)	Acrowave-assisted wet digestion: Weigh approximately 0.20 g dry weight sample material into the digestion container. Each digestion series must contain two reagent blanks (nitric acid and hydrogen peroxide without sample materials). Include at least one certified reference material corresponding to the amount expected in the samples, in order to reveal systematic errors.
	Mi (a) (b)	Acrowave-assisted wet digestion: Weigh approximately 0.20 g dry weight sample material into the digestion container. Each digestion series must contain two reagent blanks (nitric acid and hydrogen peroxide without sample materials). Include at least one certified reference material corresponding to the amount expected in the samples, in order to reveal systematic errors. Digestion programs and amounts of acids will vary with different
	Mi (a) (b) (c)	 Acrowave-assisted wet digestion: Weigh approximately 0.20 g dry weight sample material into the digestion container. Each digestion series must contain two reagent blanks (nitric acid and hydrogen peroxide without sample materials). Include at least one certified reference material corresponding to the amount expected in the samples, in order to reveal systematic errors. Digestion programs and amounts of acids will vary with different digestion systems. Add 2 mL concentrated nitric acid and 0.5 mL
	Mi (a) (b) (c)	Acrowave-assisted wet digestion: Weigh approximately 0.20 g dry weight sample material into the digestion container. Each digestion series must contain two reagent blanks (nitric acid and hydrogen peroxide without sample materials). Include at least one certified reference material corresponding to the amount expected in the samples, in order to reveal systematic errors. Digestion programs and amounts of acids will vary with different digestion systems. Add 2 mL concentrated nitric acid and 0.5 mL hydrogen peroxide to each container.
	Mi (a) (b) (c)	 Acrowave-assisted wet digestion: Weigh approximately 0.20 g dry weight sample material into the digestion container. Each digestion series must contain two reagent blanks (nitric acid and hydrogen peroxide without sample materials). Include at least one certified reference material corresponding to the amount expected in the samples, in order to reveal systematic errors. Digestion programs and amounts of acids will vary with different digestion systems. Add 2 mL concentrated nitric acid and 0.5 mL hydrogen peroxide to each container. Seal the containers in the capping station. Place carousel with the
	Mi (a) (b) (c) (d)	Acrowave-assisted wet digestion: Weigh approximately 0.20 g dry weight sample material into the digestion container. Each digestion series must contain two reagent blanks (nitric acid and hydrogen peroxide without sample materials). Include at least one certified reference material corresponding to the amount expected in the samples, in order to reveal systematic errors. Digestion programs and amounts of acids will vary with different digestion systems. Add 2 mL concentrated nitric acid and 0.5 mL hydrogen peroxide to each container. Seal the containers in the capping station. Place carousel with the digestion containers in the microwave oven and start the digestion
	Mi (a) (b) (c) (d)	 Acrowave-assisted wet digestion: Weigh approximately 0.20 g dry weight sample material into the digestion container. Each digestion series must contain two reagent blanks (nitric acid and hydrogen peroxide without sample materials). Include at least one certified reference material corresponding to the amount expected in the samples, in order to reveal systematic errors. Digestion programs and amounts of acids will vary with different digestion systems. Add 2 mL concentrated nitric acid and 0.5 mL hydrogen peroxide to each container. Seal the containers in the capping station. Place carousel with the digestion containers in the microwave oven and start the digestion program.
	Mi (a) (b) (c) (d) (e)	Acrowave-assisted wet digestion: Weigh approximately 0.20 g dry weight sample material into the digestion container. Each digestion series must contain two reagent blanks (nitric acid and hydrogen peroxide without sample materials). Include at least one certified reference material corresponding to the amount expected in the samples, in order to reveal systematic errors. Digestion programs and amounts of acids will vary with different digestion systems. Add 2 mL concentrated nitric acid and 0.5 mL hydrogen peroxide to each container. Seal the containers in the capping station. Place carousel with the digestion containers in the microwave oven and start the digestion program. The digested solution is diluted by water to a known volume (test
	Mi (a) (b) (c) (d) (e)	Acrowave-assisted wet digestion: Weigh approximately 0.20 g dry weight sample material into the digestion container. Each digestion series must contain two reagent blanks (nitric acid and hydrogen peroxide without sample materials). Include at least one certified reference material corresponding to the amount expected in the samples, in order to reveal systematic errors. Digestion programs and amounts of acids will vary with different digestion systems. Add 2 mL concentrated nitric acid and 0.5 mL hydrogen peroxide to each container. Seal the containers in the capping station. Place carousel with the digestion containers in the microwave oven and start the digestion program. The digested solution is diluted by water to a known volume (test solution).
Method of analysis	Mi (a) (b) (c) (d) (e) 1)	 Acrowave-assisted wet digestion: Weigh approximately 0.20 g dry weight sample material into the digestion container. Each digestion series must contain two reagent blanks (nitric acid and hydrogen peroxide without sample materials). Include at least one certified reference material corresponding to the amount expected in the samples, in order to reveal systematic errors. Digestion programs and amounts of acids will vary with different digestion systems. Add 2 mL concentrated nitric acid and 0.5 mL hydrogen peroxide to each container. Seal the containers in the capping station. Place carousel with the digestion containers in the microwave oven and start the digestion program. The digested solution is diluted by water to a known volume (test solution).
Method of analysis	Mi (a) (b) (c) (d) (e) 1)	 Acrowave-assisted wet digestion: Weigh approximately 0.20 g dry weight sample material into the digestion container. Each digestion series must contain two reagent blanks (nitric acid and hydrogen peroxide without sample materials). Include at least one certified reference material corresponding to the amount expected in the samples, in order to reveal systematic errors. Digestion programs and amounts of acids will vary with different digestion systems. Add 2 mL concentrated nitric acid and 0.5 mL hydrogen peroxide to each container. Seal the containers in the capping station. Place carousel with the digestion containers in the microwave oven and start the digestion program. The digested solution is diluted by water to a known volume (test solution). Preparation of calibration solutions and test solutions for ICP-MS
Method of analysis	Mi (a) (b) (c) (d) (e) 1)	 Acrowave-assisted wet digestion: Weigh approximately 0.20 g dry weight sample material into the digestion container. Each digestion series must contain two reagent blanks (nitric acid and hydrogen peroxide without sample materials). Include at least one certified reference material corresponding to the amount expected in the samples, in order to reveal systematic errors. Digestion programs and amounts of acids will vary with different digestion systems. Add 2 mL concentrated nitric acid and 0.5 mL hydrogen peroxide to each container. Seal the containers in the capping station. Place carousel with the digestion containers in the microwave oven and start the digestion program. The digested solution is diluted by water to a known volume (test solution). Preparation of calibration solutions and test solutions for ICP-MS measurement—All solutions to be measured by ICP-MS during routine runs should contain one or a set of internal standards.

the solutions. For the determination of Hg, Au must be added in order to stabilize the Hg and minimize memory effects in the tubing and during nebulization. The test solution obtained by pressure digestion should be analyzed after dilution to a known volume.

Example: Pipet exactly 10 mL of standard reagent blank or calibration solution to a vessel; add 0.1 mL diluted internal standard stock solution and mix. Pipet exactly 2 mL of test solution to a vessel; add exactly 8 mL water and 0.1 mL diluted internal standard stock solution and mix. Every solution contains ca 10 μ g/L of the internal standard Rh. The internal standard solution may also be added online by a different channel on the peristaltic pump used for the analytes. Adjust the concentration of the internal standard solution and the pump flow rate in order to achieve a concentration of the internal standard of ca 50 μ g/L.

- 2) Calibration of the ICP-MS instrument—For calibration purposes, a minimum of three different concentrations must be used. Measure the standard reagent blank and then the calibration solutions. According to the instrument manual, calculate the calibration function. Different isotope ratios between calibration solutions and test solutions should be taken into account, if necessary.
- 3) Analyses of test solutions—After calibration of the instrument, the test solutions can be analyzed. The samples obtained by pressure digestion should be diluted before measurement in order to avoid interference by high concentrations of matrix elements. If the final volume of the digested solution is 20–30 mL, a dilution by a factor of 5–10 is recommended for the ICP-MS measurement. Within suitable short intervals (e.g., after 5 or 10 samples), the blank solution and one calibration solution should be checked regularly. The recovery of the calibration solution should range within 10%. For high concentrations of Hg, prolonged washout times have to be applied. The blank level for Hg should be checked regularly in order to detect any memory or washout effects. The system should be tested for washout times using the highest calibration standard.
- 4) **Control for matrix effects**—The amount of matrix present in the test solution to be analyzed may create more or less significant matrix effects compared to pure multi-element standards. To check for matrix effects, a known amount of the multi-element standard is added to the test solution.

Example: Pipet exactly 2 mL test sample into a sample vessel, and

	add exactly 7 mL water and 1 mL Calibration Solution 3. Then add
	0.1 mL internal standard stock solution and mix. The non-added
	sample is prepared in the same way by using 1 mL water instead of
	the calibration solution. The concentrations found by addition of the
	standard should not exceed 10% of the added concentration. In case
	of greater differences, the matrix effects must be compensated by a
	standard addition calibration
	5) Standard addition calibration A standard addition calibration
	should consist of at least three points of which two are standard
	additions. The concentration of the highest standard should be three
	to five times the concentration in the sample solution. The
	concentration of the lower standard should be half of the highest
	standard i.e. $100,200$ and 400% of the initial concentration in the
	standard, i.e., 100, 200, and 400% of the linitial concentration in the
	is the collibration curve. The linear respective threads the
	in the calibration curve. The linear regression through these points
	crosses the negative concentration axis. The absolute value of this
	point is the concentration of the element in the sample solution.
	Example: For a test solution containing ca 0.5 μ g Cd/L, pipet into 4
	different sample vessels exactly 2 mL of each test sample. To the
	first sample vessel, add exactly 8 mL water (= non-spiked test
	solution). To the second sample vessel, add exactly 7.5 mL water
	and 0.5 mL Calibration Solution 3 (= Sample Spike 1, with an added
	concentration of 0.5 μ g Cd/L). To the third sample vessel, add
	exactly 7 mL water and 1 mL Calibration Solution 3 (= Sample
	Spike 2, with an added concentration of 1 μ g Cd/L). To the fourth
	sample vessel, add exactly 6 mL water and 2 mL Calibration
	Solution 3 (= Sample Spike 3, with an added concentration of 2 μ g
	Cd/L).
Calculation with units of	Calculation of the concentration is generally done automatically by the
expression	software of the ICP-MS instrument. The following steps are performed
	for each element: The count rates are corrected according to the
	correction functions chosen, the count rates are measured in the
	standard reagent blank, and calibration and test solutions are normalized
	on the count rates of the internal standard. The calibration function is
	then calculated. By the use of the count rates, the calibration function
	and the dilution factor of the concentrations of the elements are
	calculated. The content, W, as mass fraction, of the element to be
	determined in mg/kg of sample is calculated using the following
	equation:

	a x V x F
	W=
	m x 1000
	where a is the content (μ g/L) of the element in the test solution, V is the
	volume (mL) of the digestion solution after being made up to volume, F
	is the dilution factor of the test solution, and m is the mass of the test
	portion (g). Report moisture content if test samples were dried and
	indicate mass fraction (W) as dry matter. Alternatively, correct dry
	matter result for moisture content.
Inference	
(Qualitative Analysis)	
Reference	AOAC Official Method 2013.06
Approved by	Scientific Panel on Methods of Sampling and Analysis

एफएसएसएआई SSS भारतीय बाय सरकाओर मानक प्राधिकरण Food Statep and Bandwish Automby of India स्वास्य और परियार कल्यापा मंत्रालय Ministry of Health and Family Welfare	Method for the analysis of Chromium, Selenium, and Molybdenum in Infant Foods and Adult Nutritional Food Products by Inductively Coupled Plasma-Mass Spectrometry
Method No.	FSSAI 09.005:2024 Revision No. & Date 0.0
Scope	Applicable to the determination of Cr, Se, and Mo in Infant Formula and
	Adult Nutritional Products by pressure digestion and inductively coupled
	plasma-mass spectrometry (ICP-MS). Method is capable of determining
	Cr, Se, and Mo at or above 0.06, 0.03, and 0.09 mg/kg dry matter,
	respectively.
Caution	 Use fume hood and wear full personal laboratory protective clothing, gloves, and appropriate eye protection (safety glasses) when using glassware and preparing standards or test portions with acid solutions. Microwave operation involves hot pressurized acid solution. Use appropriate face protection and laboratory clothing. Inductively coupled plasmas should only be viewed with proper eye protection from ultraviolet emissions. Reagents should be regarded as potential health hazards and exposure to these materials should be minimized. Use normal laboratory safety precautions (laboratory coats and safety glasses with side shields) when handling concentrated acids, bases, and organic solvents. Additional protections such as face shields, neoprene gloves, and aprons should be used where splashing may occur. Exercise caution when handling and dispensing concentrated acids. Always add acid to water. Acids are caustic chemicals that are capable of causing severe eye and skin damage. If acids or bases come in contact with any part of the body, quickly wash the affected area with copious quantities of water for at least 15 minutes.
Principle	Test portion is heated with nitric acid in a closed vessel microwave digestion system at 200°C. Digested test solution, or an appropriate dilution, is presented to the inductively coupled plasma-mass spectrometer (ICP-MS) instrument standardized with acid matched standard calibrant solutions. An ionization buffer (potassium) is used to minimize easily ionizable element (EIE) effects, methanol is added to normalize the carbon content and nickel and tellurium are used as
	internal standards
Apparatus/Instruments	 Microwave—Commercial microwave designed for laboratory use at 0–300°C, with closed vessel system and controlled temperature ramping capability. It is recommended that the vessel design be selected that will withstand the maximum possible pressure, since organic material, and also carbonates if not given sufficient time to predigest, will generate significant pressure during digestion.

		(Vessels can reach 700 psi or more on occasion.) Vessels must be
		designed to operate with only 6 mL solution volume, or the volume
		must be adjusted accordingly.
	2)	ICP-Mass Spectrometer —With collision reaction cells (CRCs).
	3)	Various plastic ware and pipets.
Materials and Reagents	1)	Laboratory water —Use 18 M Ω water throughout for dilution.
	2)	Concentrated nitric acid (HNO3) —65–70% trace metal-grade
		HNO3 throughout.
	3)	Hvdrogen peroxide—30% ACS reagent grade.
	4)	Methanol—99.99% analytical reagent grade for matrix matching.
	5)	Potassium —10 000 mg/L in nitric acid for matrix matching.
Preparation of Reagents	1)	2 mg/L Cr and Mo and 1 mg/L Se multi-element stock standard
F		solution in nitric acid—High-Purity Standards or equivalent
		solution in mule dela Trign Furity Standards, of equivalent.
	2)	5 mg/L Ni and Te multi-element stock standard solution in nitric
	,	acid —High-Purity Standards, or equivalent.
		actal might fully standards, of equivalent.
	3)	Standard preparation—
		(a) Prepare intermediate standards from commercial stock
		standards at 40 ng/mL Cr and Mo. and 20 ng/mL Se. Custom-
		blended multi-element stock standard in HNO3 is accentable
		(b) Prenore a minimum of three multiplement working standards
		(b) Prepare a minimum of three multi-element working standards
		containing 0.8, 4.0, and 20 ng/mL Cr and Mo and 0.4, 2.0, and
		10 ng/mL Se, plus blank, with both Ni and Te internal
		standard, in HNO3. Ni is used as the internal standard for both
		Cr and Mo, and Te must be used for Se.
Sample Preparation	1)	Prepare powder samples by reconstituting approximately 25 g
		sample in 200 ml warm laboratory water (60°C).
	2)	Accurately weigh approximately 1.8 g reconstituted test portion into
	2)	Accurately weigh approximately 1.8 g reconstituted test portion into
		the digestion vessel. This represents approximately 0.2 g original
		powder sample.
	3)	Fluid samples may be prepared by accurately weighing
		approximately 1 g test portion weighed directly into the digestion
		vessel after mixing.
	4)	Microwave digestion-
	.,	(a) Add 0.5 mJ 5000 ng/mJ Ni and Te internal standard solution
		(a) Add 0.5 mE 5000 ng/mE W and 70 methal standard solution and 5 mL trace metal-grade HNO_2 followed by 2 mL H_2O_2 to
		the microwave digestion vessels
		(b) Seal vessels according to manufacturer's directions and place
		in microwave
		R_{a} Ramp temperature from ambient to 180°C in 20 min and hold
		for 20 min in stage 1. In stage 2, the microwave will

	automatically ramp to 200°C in 20 min, and hold for 20 min.
	(d) Cool vessels according to manufacturer's directions,
	approximately 20 min.
	(e) Slowly open the microwave vessels, venting the brownish
	nitrogen dioxide gases.
	(f) Add I mL H_2O_2 and redigest samples by ramping the temperature from embient to $180^{\circ}C$ in 15 min Hold et $180^{\circ}C$
	for 15 min and cool for 20 min
	5) Preparation of test solution —Add approximately 20 mL
	laboratory water to the contents of the vessel with the digested
	samples and transfer to a 50 mL sample vial. Rinse the vessel and
	transfer the rinsate into the sample vial. Add 0.5 mL methanol to the
	sample vial and dilute to 50 mL with laboratory water.
Method of analysis	1) Analyze test solutions using an ICP-MS instrument standardized
	with standard solutions. Ni is used as the internal standard for both
	Cr and Mo (helium mode), and Te must be used for Se (hydrogen
	mode).
	2) Analyze a 4 ng/mL Cr and Mo, and 2 ng/mL Se working standard or
	other suitable quality control solution every 10 test portions to
	monitor for instrument drift and linearity (result $100 \pm$ within 5% of
	nominal).
	3) The inclusion of a method blank (run as a sample), a duplicate
	sample [relative percent difference (RPD) \leq within 10%], and
	known reference materials serving as control samples (recovery
	check within control limits) are considered mandatory for good
	method performance. If any of these OC checks fails, results should
	be considered invalid.
Calculation with units of	Sample concentrations were automatically calculated by the ChemStation
expression	software using a nonweighted least-squares linear regression calibration
-	analysis to produce a best-fit line:
	Y = ax + blank
	The analyte concentration in the sample was then calculated:
	y- blank
	$x = \frac{y}{1 + y} x DF$
	a
	where
	x = analyte concentration (ng/g);
	y = sample response ratio (ng/mL), which is the measured count of
	each analyte's standard solution data point in the calibration curve

	divided by the ratio of the counts/concentration of the internal
	standard at the same level;
	blank = blank standard solution (ng/mL), which is the measured
	count of the blank standard solution data point in the calibration
	curve divided by the ratio of the counts/concentration of the
	internal standard at the same level as the blank standard solution;
	a = slope of the calibration curve;
	DF = dilution factor of the sample solution divided by sample weight
	(mL/g).
Inference	
(Qualitative Analysis)	
Reference	AOAC Official Method 2011.19
Approved by	Scientific Panel on Methods of Sampling and Analysis

एफएसएसएआइ	Method for the analysis of Total Iodine in Infant Foods and Adult/Pediatric Nutritional foods by Inductively Coupled Plasma– Mass Spectrometry
Method No.	FSSAI 09.006:2024 Revision No. & Date 0.0
Scope	Applicable for the determination of total iodine in infant formula and adult nutritional products by ICP/MS using microwave oven closed-vessel acid digestion.
Caution	 Use fume hood and wear full personal laboratory protective clothing, gloves, and appropriate eye protection (safety glasses) when using glassware and preparing standards or test portions with acid solutions. Oven and microwave digestion procedures involve moderately elevated temperatures. Carefully remove samples and allow cooling before removing the lids from the digestion vessels. Inductively coupled plasmas should only be viewed with proper eye protection from ultraviolet emissions. The method involves the use of strong bases and concentrated acids. Avoid spills, inhalation, and exposure to human tissues. Use normal laboratory safety precautions (laboratory coats and safety glasses with side shields) when handling concentrated acids, bases, and organic solvents. Additional protections such as face shields, neoprene gloves, and aprons should be used where splashing may occur. Exercise caution when handling and dispensing concentrated acids. Always add acid to water. Acids are caustic chemicals that are capable of causing severe eye and skin damage. If acids or bases come in contact with any part of the body, quickly wash the affected area with copious quantities of water for at least 15 minutes.
Principle	Test portion is digested with KOH solution in an oven at $105 \pm 5^{\circ}$ C in a closed vessel until the dissolution of iodine is complete. Mix the digested test solution with stabilizer concentrate. Filter the sample through a 1 µm membrane filter. This sample solution or an appropriate dilution, is presented to the inductively to inductively coupled plasma-mass spectrometer (ICP-MS) instrument standardized with matched standard calibrate solutions.
Apparatus/Instruments	 Polypropylene (PP) tubes.—Assorted sizes, use as received. Oven (i.e., warming/drying oven). Open-vessel microwave digestion unit (optional). Analytical and top-loader balances.—Sensitive to 0.0001 and 0.01 g, respectively. ICP-MS system. Auto sampler for ICP-MS. Adjustable (electronic or manual) volumetric pipets and pipet tips. Re-pipet volumetric dispenser—Adjustable volume.

	9) Polypropylene or Teflon bottles for storage of reagents.
	10) Disposable plastic syringes.
	11) Syringe filters with 1 μm membrane.
	Note: All laboratory plasticware should be single-use wheneverpossible.
	If reuse is necessary, wash using 10% nitric acid, thenrinse
	thoroughly with purified water prior to use.
Materials and Reagents	1) KOH (KOH) pellets, certified ACS—KOH may contribute
	background levels of iodine.
	2) KOH solution—50% (w/v).
	3) Ammonium hydroxide (NH_4OH)—Certified ACS.
	4) Sodium thiosulfate $(Na_2S_2O_3)$ —99.99+% metal basis.
	5) Surfactant (i.e., Triton® X-100).
	6) Nitric acid (HNO ₃)—High purity.
	7) Perchloric acid (HClO ₄)—High purity.
	8) Purified water—18 M Ω /cm.
Preparation of Reagents	Iodine stock standard solutions—Certified ICP-MS or ICP grade
	single- or multi-element standard solutions (or other certified reference
	materials; CRM) are used to prepare calibration, calibration verification
	standards, internal standards, and spiking solutions.
	 praseodymium (Pr), samarium (Sm), tellurium (Te), and rhodium (Rh). Concentrations used for analysis are 30.0 ppb Pr, Sm, Rh, and 500 ppb Te. The internal standard solution reagent's concentration is 2% HNO₃, 0.1% HClO₄, 0.01% Triton X-100, 0.25% KOH, 0.1% NH₄OH, and 0.01% Na₂S₂O₃ in purified water. 1) 5% KOH solution.—Dissolve 25 g KOH pellets in an appropriate amount of purified water, then dilute to 500 mL with purified water. Store at room temperature. Reagent expires 6 months after preparation date. Alternatively, dilute 50 mL 50% (w/v) KOH solution to a final volume of 500 mL with purified water. Store at room temperature. Reagent expires 6 months after preparation date. 2) 50% KOH solution.—Dissolve 250 g KOH pellets in an appropriate amount of purified water, then dilute to 500 mL with purified water. Store at room temperature. Reagent expires 6 months after preparation date.
	 Note: Use caution when preparing this solution as a significant amount of heat is generated. 3) Stabilizer concentrates—Dissolve 5 g Na₂S₂O₃ in an appropriate amount of purified water, add 50 mL NH₄OH, then dilute to 500 mL with purified water. The resulting concentration is 10% NH₄OH and 1% Na₂S₂O₃ in purified water. Store at room temperature. Reagent expires 6 months after preparation date. 4) Wash solution (rinse)—Dissolve 2 g Triton X-100 in an

		While stirring, weigh 5–10 g of the slurry/suspension into an
		appropriate digestion vessel, add approximately 10 mL water, then
		proceed with the addition of the KOH as stated below.
	(b)	Accurately weigh or aliquot an appropriate amount (0.2500 to 2.50)
	(~)	g or 0.50 to 10 mL) of sample into a labeled 100 mL digestion
		vessel Add 20 mL purified water to the vessel
		Accurately weigh an appropriate amount $(0.2500 \text{ to } 1.00 \text{ g})$ of an
		appropriate CRM i.e. National Institute of Standards and
		Technology Standard Paferance Material (NIST SPM) 1540 or
		3280 if applicable in the same manner as the samples SPM 1549
		may be digested using either 5 or 50% KOH solution SPM 3280
		should be digested using only the 50% KOH solution.
	(-)	Designate at least one digestion vessel as the digest blank. The
	(c)	Designate at least one digestion vessel as the digest blank. The
		algestion blank(s) should be treated in the same manner as the
		samples. If bout the 5 and 50% KOH solutions will be used,
		prepare at least one blank with each concentration. Place an
		anduot of spiking solution (if applicable) into an appropriately
		labeled digestion vessel.
	(d)	Add either 10 mL 5% KOH solution or 10 mL 50% KOH solution
	No	to each digestion vessel.
	INO	5% KOLL solution
	(\cdot)	Dilute to 50 mL. Seel the vessels and swirl or use a vortex.
	(e)	apparetus to mix. Avoid inverting as this may allow semple to
		apparatus to mix. Avoid inverting as this may allow sample to adhere to the inner wells of the vessel above the level of the
		direction solution. Direct complex in an even set to maintain 105
		$\pm 5^{\circ}$ C until the dissolution of jodine is complete approximately 1
		1 5 C until the dissolution of fourie is complete, approximately 1
	(f)	After removal from the oven allow samples to cool first then
	(1)	add2 mL stabilizer concentrate and bring to volume with purified
		water
	No	te. If the final volume will be 50 mL add 1 mL stabilizer.
	con	centrate
	(g)	Can the vessels, then invert to mix thoroughly. Filter the sample
	(g)	solution by filling a disposable syringe with the digested sample
		solution attach a 1 um membrane filter then filter an adequate
		amount (i.e. several milliliters) into appropriate vessel (i.e. 15 mJ
		PP centrifuge tube) to be used for analysis Store samples at
		ambient temperature
		unorent temperature.
) On	en vessel microwave digestion (optional)-
-	, P	Accurately weigh approximately 5.00 g of sample into an
	()	appropriate vessel (150 mL or 250 mL beaker) and record the
		sample weight. Without zeroing the balance, add water to make
		approximately 100 g. Record the sample + water weight. Place a
		"Provinsion of the barrier of the ba

	stir bar in the mixture and stir on a stir plate to form a
	homogenous slurry/suspension.
	while stirring, weigh $5-10$ g of the slurry/suspension into an
	appropriate digestion vessel, weigh 5 g of the slurry/suspension,
	and do not add additional water. Proceed with the addition of KOU as described below.
	KOH as described below.
	(b) Accurately weigh or aliquot an appropriate amount $(0.2500 \text{ to } 1.00 to $
	g or 0.50 to 2 mL) of sample into a labeled microwave digestion
	vessel already contains 5 mL purified water.
	(c) Designate at least one digestion vessel as the digest blank. The
	digestion blank(s) should be treated in the same manner as the
	samples. If both the 5 and 50% KOH solutions will be used,
	prepare at least one blank with each concentration. Place an
	aliquot of spiking solution (if applicable) into an appropriately
	labeled microwave digestion vessel.
	(d) Add either 5 mL 5% KOH solution or 5 mL 50% KOH solution to
	each digestion vessel.
	Note: If values well below 500 µg/kg are anticipated, add 5 mL of 5%
	KOH solution.
	(e) Seal the vessels and swirl or use a vortex apparatus to mix. Avoid
	inverting as this may allow sample to adhere to the inner walls of
	the vessel above the level of the digestion solution. Place the
	digestion vessels into the carousel of the open-vessel microwave
	digestion unit. If less than the maximum capacity is to be digested,
	distribute the vessels evenly throughout the carousel. Digest the
	samples in the microwave until the dissolution of iodine is
	complete. The vessel caps should be loosened slightly (from fully
	tightened) during the digestion procedure.
	(f) After removal from the oven, allow sample to cool first, then add
	1 mL stabilizer concentrate and bring to volume with purified
	water. Cap the vessels, and then invert to mix thoroughly.
	(g) Filter the sample solution by filling a disposable syringe with the
	digested sample solution, attach a 1 µm membrane filter, then
	filter an adequate amount (i.e., several milliliters) into appropriate
	vessel (i.e., 15 mL PP centrifuge tube) to be used for analysis.
	Store samples at ambient temperature.
Method of analysis	The digested samples are analyzed directly or diluted so that the iodine
	concentration will fall within the calibration range.
	1) Samples digested with 50% KOH solution must be diluted 1 to 10
	mL to achieve the desired final concentration of 0.5% KOH.
	2) Aliquot 1 mL of the filtrate into an appropriate vessel (i.e., 15 mL
	PP centrifuge tube), add 0.18 mL stabilizer concentrate, then
	dilute to 10 mL with purified water.
	3) If samples digested with 50% KOH solution need more than a 1 to

	1			
		10 mL dilution to obtain a additional dilution must be p	reading on the calibration curve, repared from the original 1 to 10 n	an nL
	1		• . • . • . • . • .	
	4) Aliquot the desired amount i	into an appropriate vessel (i.e., 15	or
	-	50 mL PP centrifuge tube), th	ien dilute to volume with diluent.	
	5	internal standard solution	on while concomitantly introduct	ng
		anditioned (approximately 1	h-line unrough a mixing block un	
		introduced via a peristaltic	nump using orange/groop two st	
		PVC pump tubing (0.38 m	m id) After conditioning begin	to
		aspirate carrier solution while	e continuing to add internal standar	rd
		Analyze samples using ICP-N	AS	Iu.
		r maryze samples using ter i		
	Isoto	pe selection and interferences	- The internal standards listed below	W
	can u	se for method development:		
	Г Г			
		Analyte	Mass, amu	
	-	Analyte Iodine	Mass, amu 126.900	
	-	Analyte Iodine Praseodymium	<u>Mass, amu</u> 126.900 140.907	
		Analyte Iodine Praseodymium Samarium	<u>Mass, amu</u> 126.900 140.907 146.915	
		Analyte Iodine Praseodymium Samarium Rhodium	Mass, amu 126.900 140.907 146.915 102.906	
		Analyte Iodine Praseodymium Samarium Rhodium Tellurium	Mass, amu 126.900 140.907 146.915 102.906 146.915	
		Analyte Iodine Praseodymium Samarium Rhodium Tellurium	Mass, amu 126.900 140.907 146.915 102.906 146.915	
		Analyte Iodine Praseodymium Samarium Rhodium Tellurium	Mass, amu 126.900 140.907 146.915 102.906 146.915	
Calculation with units of	Calcu	Analyte Iodine Praseodymium Samarium Rhodium Tellurium	Mass, amu 126.900 140.907 146.915 102.906 146.915	of
Calculation with units of expression	Calcu the IC	Analyte Iodine Praseodymium Samarium Rhodium Tellurium ulation of the concentration is d CP-MS instrument.	Mass, amu 126.900 140.907 146.915 102.906 146.915	of
Calculation with units of expression Inference	Calcu the IC	Analyte Iodine Praseodymium Samarium Rhodium Tellurium ulation of the concentration is d CP-MS instrument.	Mass, amu 126.900 140.907 146.915 102.906 146.915	of
Calculation with units of expression Inference (Qualitative Analysis)	Calcu the IC	Analyte Iodine Praseodymium Samarium Rhodium Tellurium ulation of the concentration is d CP-MS instrument.	Mass, amu 126.900 140.907 146.915 102.906 146.915	of
Calculation with units of expression Inference (Qualitative Analysis) Reference	Calcu the IO	Analyte Iodine Praseodymium Samarium Rhodium Tellurium ulation of the concentration is d CP-MS instrument.	Mass, amu 126.900 140.907 146.915 102.906 146.915	of

एफएसएसएआई SSS भारतीय साथ सरक्ष और मानक प्रश्विम्लग Food Bakery and Bandudas Autority of India स्वास्थ्य और परिवार कल्याण मंत्रालय Ministry of Health and Family Welfare	Method for the Determin in Seafood by High Inductively Co	nation of Methyl Men Performance Liquid oupled Plasma–Mass	rcury and Total Mercury l Chromatographic- s Spectrometry
Method No.	FSSAI 09.007:2024	Revision No. & Dat	e 0.0
Scope	This method describes procedures for using high performance liquid chromatography (HPLC) and inductively couple plasma-mass spectrometry (ICP-MS) to determine methyl mercury and total mercury in seafood. Total mercury in this method is calculated as the sum of inorganic and methyl mercury determined in analytical solution.		
	Analytical parameters	$LOD(\mu g/kg)$	$LOQ (\mu g/kg)$
	Total Mercury	3.8	<u></u> <u></u> <u></u>
Caution	 Use fume hood and w gloves, and appropria glassware and preparin Inductively coupled p protection from ultrav Reagents should be re to these materials sho normal laboratory sa glasses with side shiel protections such as fa be used where splashin Exercise caution whe Always add acid to wa of causing severe eye contact with any part of copious quantities of w 	vear full personal laborate eye protection (sand standards or test polasmas should only biolet emissions. garded as potential herould be minimized as fety precautions (laborated des) when handling or the shields, neoprene ng may occur. In handling and dispetenter. Acids are caustic e and skin damage. I of the body, quickly vater for at least 15 minimized for the shields of the shields.	pratory protective clothing, afety glasses) when using portions with acid solutions. be viewed with proper eye ealth hazards and exposure s much as possible. Use poratory coats and safety rganic solvents. Additional gloves, and aprons should ensing concentrated acids. chemicals that are capable If acids or bases come in wash the affected area with inutes.
Principle	Hg species are isolat seafood or 0.2 g dried aqueous solution of 19 60 °C. The seafood-c and filtered to remove of filtered extract are are separated by HPL0 L-cysteine.HCl.H2O + ratio 202 vs. time is re species are identified b inorganic Hg concent determined for standa cysteine.HCl.H2O and	ed from 0.5 g non- d reference material l % (w/v) L-cysteine.HG ysteine mixture is co particles > 0.45 µm G injected onto a C-18 C using a mobile pha - 0.1% (w/v) L-cyste corded and analyte pe by retention times of p trations are calculate rd solution prepared l peak areas measure	dried, finely comminuted by extracting with 50 mL Cl.H2O for 120 minutes at boled to room temperature diameter. Fifty μ L portions column where Hg species ase of aqueous 0.1% (w/v) ine. Hg at mass-to-charge eak areas are measured. Hg peaks. Methylmercury and ed using response factors in aqueous 1% (w/v) L- d in extracts. Total Hg is

		calculated as the sum of methyl and inorganic Hg concentrations
		determined in extracts.
Apparatus/Instruments	1)	Inductively coupled plasma-mass spectrometer—Capable of
		measuring mass-to-charge ratio 202 in time resolved
		(chromatographic) mode. Instrument should electronically interface
		with or can be configured to remote start by standard HPLC
		instruments for integrated operation.
	2)	High performance liquid chromatography—An integrated or
		modular system consisting of an analytical pump and autosampler
		capable of delivering aqueous mobile phase through analytical column
		isocratically and programmed injection of acidic aqueous solutions.
	3)	HPLC analytical column—150 x 4.6 mm, 4 μ m particle size.
	4)	Glass vials for extracting analytical samples—Amber, borosilicate
	_	glass vials, 60 mL capacity, with screw caps.
	5)	Heated water bath—Capable of temperature control with sufficient
		water and meintain water temperature at 60 ± 4 °C for 120
		cap level and maintain water temperature at 00 ± 4 C 101 120 minutes
	6)	Svringe for filtering extracts_Disposable general use and non-
	U)	sterile
	7)	Svringe filters for filtering extracts—Disposable, 0.45 um
	.,	polypropylene membrane with polypropylene housing.
Materials and Reagents	1)	Reagent water
	2)	Methylmercury(II) chloride—CH3HgCl crystals, purity $\geq 95\%$,
		formula wt. 251.08.
	3)	Mercury(II) chloride-HgCl2 crystals, ACS grade, formula wt.
		271.50.
	4)	L-cysteine hydrochloride monohydrate (L-cysteine.HCl.H2O)—Purity
		> 98.5%, formula wt. 175.64.
	5)	L-cysteine (free base)—Purity \geq 99.8%, formula wt. 121.16.
Preparation of Reagents	1)	Extraction solution, aqueous 1% (w/v) L-cysteine.HCl.H2O-
		Dissolve 10 ± 0.1 g L-cysteine.HCl.H2O crystals in 1000 ± 10 mL
		reagent water.
	2)	Cysteine solution for preparation of standard solutions, aqueous 10%
		(w/v) L-cysteine.HCI.H2O—Dissolve 5 ± 0.05 g L-cysteine.HCI.H2O
	2)	crystals in 50 ± 0.5 mL reagent water.
	3)	Mobil phase, aqueous 0.1% (w/v) L-cysteine + 0.1% (w/v) L-
		cystelle. $HC1.H2O$ — Dissolve 0.5 ± 0.01 g L-cystelle and 0.5 ± 0.01 g L cystelle HC1 H2O in 500 ± 5 mL reagent water
		$g = -cysteme.ret(1.1120 \text{ in } 500 \pm 5 \text{ in } 100 \text{ gcm} \text{ watch}$
)	contain up to 20% (v/v) methanol Hg=1000 mg/I
		volumetric flask on analytical balance in chemical fume hood. Weigh
		0.1252 g CH3HgCl (FW=251.08) in flask with stopper in place. Add
		≤ 20 mL methanol and swirl stoppered flask to dissolve CH3HgCl.
		Dilute to 100.0 mL with reagent water. Discard solution in which

		inorganic Hg is $> 3\%$ of the theoretical methylmercury concentration.
	5)	Inorganic Hg stock solution, HgCl2 in 0.1% (v/v) HCl, Hg = 2000
		mg/L—Tare 50-mL polypropylene centrifuge tube. Weigh 0.1354 g
		HgCl2 (FW = 271.50) in tube. Add 5.0 ± 0.1 mL 1% (v/v) HCl and
		swirl to dissolve. Dilute to 50.0 ± 0.5 mL with reagent water.
	6)	Multi-analyte intermediate solution, Hg due to CH3HgCl= 1000
		$\mu g/L$ and Hg due to HgCl2 = 1000 $\mu g/L$ in 0.02% (w/v) L
		cysteine.HCl.H2O—Mix approximately 40mL reagent water and 0.1
		mL 10% (w/v) L-cysteine.HCl.H2O in 50-mL polypropylene tube.
		Add 50.0 µL methylmercury stock solution and 25.0 µL inorganic Hg
		stock solution. Dilute to 50.0 ± 0.5 mL with reagent water.
	7)	Multi-analyte working standard solution, Hg due to CH3HgCl =1
		µg/L and Hg due to HgCl2=1µg/L in 1% (w/v) L-
		cysteine.HCl.H2O—Mix approximately 40 mL reagent water and 5.0
		± 0.05 mL 10% (w/v) L-cysteine.HCl.H2O in 50-mL polypropylene
		tube. Add 50.0 μ L multi-analyte intermediate solution. Dilute to 50.0 \pm
		0.5 mL with reagent water. Mix and immediately transfer a portion to
		glass HPLC autosampler vial for storage before use.
	8)	Check solution—Use multi-analyte working standard solution for the
		check solution.
	9)	Independent check solution (ICS)—Prepare independent inorganic
		and methylmercury stock solutions, and independent multi-analyte
		intermediate and working standard solutions according to steps (9) –
		(12) from a different starting material than that used to prepare the
		primary stock solutions.
Sample Preparation	1)	Weigh analytical portion into 60-mL amber glass extraction vial and
		determine mass of analytical portion. Generally, weigh 0.5 ± 0.1 g
	\mathbf{a}	edible portion of seafood. Use 0.2 ± 0.01 g for reference materials.
	2)	Add 50.0 ± 0.5 mL extraction solution (aqueous 1% (W/V) L-
		vigorously by hand
	3)	Heat extraction yiels 120 ± 5 min in water bath at 60 ± 4 °C. Shake
	5)	each vial vigorously by hand after 60 minutes of heating and again
		after 120 minutes of heating
	4)	Remove extraction vials from water bath and allow cooling to room
	.,	temperature
	5)	Filter a portion of extract through 0.45 um filter directly into HPLC
	- /	autosampler vial.
Method of analysis	Th	e optimum operating settings and conditions must be determined for
	the	e equipment used.
	In	strument Setup
	1)	Setup and configure HPLC and ICP-MS separately before connecting
		equipment together. Follow instrument standard operating procedures
		for startup and initialization.
		• Tune ICP-MS normally. Ensure instrument performance meets

	 default specifications for sensitivity, precision, stability, and/or other established system suitability requirements. Set ICP-MS data acquisition for mass-to-charge ratio 202 in time resolved mode with 1 replicate (read) per point and use an initial dwell (integration) time of 1 second per point. Purge and condition HPLC and analytical column with mobile phase.
2)	 Connect HPLC to ICP-MS. Enable communication between instruments to synchronize ICP-MS data acquisition with HPLC injection start. Stop HPLC flow and connect column output directly to ICP nebulizer using tubing and fittings.
3)	 Optimize operating conditions. Start HPLC flow and ensure proper liquid flow through ICP nebulizer and drainage of spray chamber. Analyze a multi-analyte standard solution and adjust acquisition parameters to obtain 10-20 data points across narrowest analyte peak. Monitor instrument conditions to ensure operation is stable and within normal functioning range.
4	 Check instrument performance. Verify baseline resolution between inorganic and methylmercury peaks and that peaks are not tailing excessively. Analyze a multi-analyte standard solution 3 or more times and verify short term precision is less than 5% relative standard deviation (peak area) for all analyte(s) of interest. Verify absence of instrument carry-over.
D	etermination of Analyte Concentration Using Response Factor
	Analyze a multi-analyte standard solution (or single analyte standard solutions separately) and extraction solution 2 or more times each
2)	 Calculate response factors and check accuracy of working standard(s). Analyze independent check solution(s). Acceptance criteria: recovery within 100 ± 5%.
3	Analyze analytical solutions and quality control solutions.
4	 Check instrument measurement performance Check solution analyzed at a frequency of 10% and at end of the
	analytical run has a recovery of $100 \pm 10\%$ (continuing calibration verification).
	• Extraction solution analyzed following each check solution analysis is < ASDL (verify absence of carry-over)
	• Measurements do not surpass the LDR. Dilute analytical solution

	with extraction solution if necessary to comply with criteria.
	Retention time of analyte peaks of analytical solution is comparable to standard solution
Calculation with units of	Calculate response factor of analyte, RF (cps-s/ug/L)
expression	
	RF = Astd-ave-Aes-aveCstd
	Cstd
	where A and A are avalance peak area of $n > 2$ injections of standard
	Astin-ave= average peak area of $n > 2$ injections of standard solution(s) (cps-s)
	Aes-ave= average peak area of $n > 2$ injections of extraction solution
	(cps-s) (0 if no peak is detected)
	Cstd= analyte concentration (μ g/L) in standard solution(s)
	Calculate concentration of analyte (inorganic mercury or methylmercury) in analytical solution, S (μ g/L)
	S = Aas - Aes - ave
	RF
	where Δ as - neak area of analyte in analytical solution (cns-s)
	Aes-ave= average peak area of analyte in extraction solution (cps-s)
	(0 if no peak is detected)
	RF = response factor of analyte (cps-s / μ g/L)
	Calculate concentration of total Hg in analytical solution, ST (μ g/L) ST = Sinorg+Smethyl
	where
	Sinorg= concentration of inorganic Hg in analytical solution (μ g/L) Smethyl= concentration of methyl Hg in analytical solution (μ g/L)
	Calculate the concentration (mass fraction) of analyte in the
	analytical portion according to the formula
	Concentration ($\mu g/kg$)= [(ST×DF)-MBKL]×V
	m×MCF
	ST = concentration of analyte (S or total Hg ST) in analytical
	solution (or diluted analytical solution) (μ g/L)
	$MBKL = laboratory MBK (\mu g/L)$
	V = volume (L) of analytical solution (0.050 L)
	m = mass of analytical portion (kg)
	DF = dilution factor (1 if analytical solution not diluted) MCE – mass correction factor (1 if water or other solvent not added
	to aid homogenization)
Inference	

(Qualitative Analysis)	
Reference	U.S. Food and Drug Administration-(4.8) High Pressure Liquid
	Chromatographic-Inductively Coupled Plasma-Mass Spectrometric
	Determination of Methylmercury and Total Mercury in Seafood (version
	1.0)
Approved by	Scientific Panel on Methods of Sampling and Analysis